当前位置: X-MOL 学术Clim. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A dynamic linear model of monthly minimum and maximum temperature changes in three physiographic regions of the Central Himalayas
Climate Research ( IF 1.2 ) Pub Date : 2019-10-17 , DOI: 10.3354/cr01582
B Regmi , S Lamichhane

ABSTRACT: Robust statistical techniques are required to estimate the trend in meteorological data, where data are available only for a limited period with too many missing observations. We examined the application of a dynamic linear model (DLM) for estimating changes in time series meteorological data. For this purpose, we used maximum and minimum monthly temperatures recorded over 36 yr at 6 meteorological stations representing 3 physiographic regions in the Central Himalayas. Temperature changes over time may be influenced by hidden processes, such as seasonality. To elucidate such processes, we estimated a Fourier-form seasonal model with 12 seasons with 2 harmonics. The DLM model fit was evaluated based on the distribution of standardized residuals and the p-value of Ljung-Box statistics. We reported the level of temperature change from 1980 to 2015. The DLM results were compared with more conventional, simple linear regression analysis (SLR). Although a significant trend of temperature increase was observed in the Central Himalayas, the change was not uniform across the physiographic regions. Localized changes in temperature levels may be due to geographic configuration and micro-climate. Notably, the SLR showed a similar trend of average annual temperature change to that of the DLM but overestimated the magnitude of the change. SLR is easily executed but is sensitive to outliers and non-normality in the observations. Under these circumstances, DLM may be a more robust modeling technique for estimating changes in meteorological data.

中文翻译:

喜马拉雅中部三个自然区每月最低和最高温度变化的动态线性模型

摘要:需要可靠的统计技术来估算气象数据的趋势,因为气象数据仅在有限的时间内可用,而缺少的观测值太多。我们检查了动态线性模型(DLM)在估计时间序列气象数据变化中的应用。为此,我们使用了喜马拉雅中部3个地理区域的6个气象站记录的36年以上的最高和最低每月温度。随时间变化的温度可能受诸如季节之类的隐藏过程的影响。为了阐明这种过程,我们估计了一个傅立叶形式的季节模型,该模型具有12个季节和2个谐波。根据标准化残差的分布和Ljung-Box统计的p值评估DLM模型拟合。我们报告了1980年至2015年的温度变化水平。将DLM结果与更常规的简单线性回归分析(SLR)进行了比较。尽管在喜马拉雅中部地区观察到明显的温度升高趋势,但在整个地理区域的变化并不均匀。温度水平的局部变化可能归因于地理构造和微气候。值得注意的是,SLR的年平均温度变化趋势与DLM相似,但高估了变化幅度。SLR易于执行,但对观测值中的异常值和非正常值敏感。在这种情况下,DLM可能是用于估计气象数据变化的更强大的建模技术。简单线性回归分析(SLR)。尽管在喜马拉雅中部地区观察到明显的温度升高趋势,但在整个地理区域的变化并不均匀。温度水平的局部变化可能归因于地理构造和微气候。值得注意的是,SLR的年平均温度变化趋势与DLM相似,但高估了变化幅度。SLR易于执行,但对观测值中的异常值和非正常值敏感。在这种情况下,DLM可能是用于估计气象数据变化的更强大的建模技术。简单线性回归分析(SLR)。尽管在喜马拉雅中部地区观察到明显的温度升高趋势,但在整个地理区域的变化并不均匀。温度水平的局部变化可能归因于地理构造和微气候。值得注意的是,SLR的年平均温度变化趋势与DLM相似,但高估了变化幅度。SLR易于执行,但对观察值中的异常值和非正态敏感。在这种情况下,DLM可能是用于估计气象数据变化的更强大的建模技术。温度水平的局部变化可能归因于地理构造和微气候。值得注意的是,SLR的年平均温度变化趋势与DLM相似,但高估了变化幅度。SLR易于执行,但对观察值中的异常值和非正态敏感。在这种情况下,DLM可能是用于估计气象数据变化的更强大的建模技术。温度水平的局部变化可能归因于地理构造和微气候。值得注意的是,SLR的年平均温度变化趋势与DLM相似,但高估了变化幅度。SLR易于执行,但对观察值中的异常值和非正态敏感。在这种情况下,DLM可能是用于估计气象数据变化的更强大的建模技术。
更新日期:2019-10-17
down
wechat
bug