当前位置: X-MOL 学术J. Propuls. Power › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid Electric Aircraft Switched Model Optimal Control
Journal of Propulsion and Power ( IF 1.7 ) Pub Date : 2020-06-22 , DOI: 10.2514/1.b37419
Tyler J. Wall 1 , Richard T. Meyer 1
Affiliation  

This work presents the modeling, control design, and simulation of a Cirrus SR20 with a hybrid electric propulsion (HEP) system composed of a combustion engine and battery-supplied electric drive that operates in one of two modes: 1) battery discharging and electric drive propelling, and 2) battery charging and electric drive generating. Given a supervisory-level system model, two optimization control problems are developed. The first finds the elevator deflection and propeller shaft power and speed that minimizes the desired flight profile tracking error. The second manages HEP power flows to provide the desired propeller shaft power while trading off fuel use and battery charge level deviation. The second optimal control problem is a switched problem that requires optimization over discrete and continuous control inputs. The problem is solved using an embedding method that relaxes the discrete valued inputs to continuous values to avoid computational complexity associated with alternate approaches. The resulting model predictive control is demonstrated with simulation of two flight profiles: sawtooth-shaped altitude profile while maintaining constant velocity and an experimental one taken from a production aircraft. Simulations show good profile tracking and appropriate power management. The HEP-equipped aircraft demonstrates a 15.6% fuel savings over the experimental profile; further, the proposed control achieves a 4.3% savings over a rule-based approach under certain conditions.



中文翻译:

混合动力飞机切换模型最优控制

这项工作介绍了具有混合动力推进系统(HEP)的Cirrus SR20的建模,控制设计和仿真,该系统由内燃机和电池供电的电力驱动器组成,该电力驱动器以两种模式之一运行:1)电池放电和电力驱动推进,以及2)电池充电和电力驱动发电。给定主管级别的系统模型,将开发两个优化控制问题。首先找到电梯的偏转和螺旋桨轴的功率和速度,从而将所需的飞行曲线跟踪误差降至最低。第二种方法管理HEP功率流,以提供所需的螺旋桨轴功率,同时权衡燃料使用和电池电量水平偏差。第二个最佳控制问题是切换问题,需要对离散和连续控制输入进行优化。使用嵌入方法解决了该问题,该方法将离散值输入放宽为连续值,以避免与替代方法相关的计算复杂性。通过模拟两个飞行轮廓来演示所产生的模型预测控制:锯齿形的高度轮廓(保持恒定速度)和实验性的生产飞机。仿真显示良好的配置文件跟踪和适当的电源管理。配备HEP的飞机在实验情况下可节省15.6%的燃油;此外,在某些情况下,与基于规则的方法相比,拟议的控制措施可节省4.3%的费用。通过模拟两个飞行曲线来演示模型预测控制的结果:保持恒定速度的锯齿形高度剖面和从生产飞机上获得的实验性模拟。仿真显示良好的配置文件跟踪和适当的电源管理。配备HEP的飞机在实验情况下可节省15.6%的燃油;此外,在某些情况下,与基于规则的方法相比,拟议的控制措施可节省4.3%的费用。通过模拟两个飞行轮廓来演示模型预测控制的结果:保持恒定速度的锯齿状高度轮廓,以及从生产型飞机上获得的一个实验性仿真轮廓。仿真显示良好的配置文件跟踪和适当的电源管理。配备HEP的飞机在实验情况下可节省15.6%的燃油;此外,在某些情况下,与基于规则的方法相比,拟议的控制措施可节省4.3%的费用。

更新日期:2020-08-20
down
wechat
bug