当前位置: X-MOL 学术Am. Mineral. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New Mineral Names,
American Mineralogist ( IF 2.7 ) Pub Date : 2020-08-01 , DOI: 10.2138/am-2020-nmn105819
Dmitriy I. Belakovskiy 1 , Fernando Cámara 2 , Yulia Uvarova 3
Affiliation  

This New Mineral Names has entries for 16 new minerals, including, ariegilatite, aurihydrargyrumite, carmeltazite, cerromojonite, dargaite, ewingite, fiemmeite horákite, nöggerathite-(Ce), paddlewheelite, parafiniukite, sharyginite, thalhammerite, thermaerogenite, tiberiobardiite, and verneite.E.V. Galuskin, B. Krüger, I.O. Galuskina, H. Krüger, Y. Vapnik, J.A. Wojdyla, and M. Murashko (2018) New mineral with modular structure derived from hatrurite from the pyrometamorphic rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals, 8(3), 19.E.V. Galuskin, B. Krüger, I.O. Galuskina, H. Krüger, Y. Vapnik, J.A. Wojdyla, and M. Murashko (2018) New mineral with modular structure derived from hatrurite from the pyrometamorphic rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals, 8(3), 19.Ariegilatite (IMA 2016-100), ideally BaCa12(SiO4)4(PO4)2F2O, trigonal, is a new member of the nabimusaite group* found in different outcrops of pyrometamorphic rocks of the Hatrurim Complex located in the territories of Israel, Palestine Autonomy, and Jordan. The first samples of ariegilatite were found in larnite pebble (as poikilitic crystals up to 0.25 mm with gehlenite, spinel, fluormayenite, fluorapatite, perovskite), in the northern part of the Daba-Siwaqa area, 80 km south of Amman, Jordan. While the description of the mineral is mostly based on samples collected in the Negev Desert near Arad, Israel (N31°13′E35°16′) ariegilatite was also found in flamite rocks (with fluormayenite-fluorkyuygenite, brownmillerite, fluorapatite, gehlenite, and jasmundite) at Ma'ale Adummim, Palestineian Autonomy. Ariegilatite is usually limited to re-crystallization zones of dark-gray fine-grained spurrite rocks, which differ from the surrounding rocks by discoloration, development of thin calcite veins and also by local appearance of large spurrite metacrysts (up to 1 cm in size), as well as the presence of sulfide mineralization. It is associated with spurrite, calcite, brownmillerite, shulamitite, CO3- bearing fluorapatite, fluormayenite-fluorkyuygenite, aravaite, periclase, brucite, barytocalcite, baryte, garnets of elbrusite-kerimasite series, and unidentified Ca-Fe- and Rb-bearing K-Fe sulfides. Ariegilatite is often overgrown and replaced by stracherite. It forms strongly flattened crystals of disk-shaped form. Pseudo-aciculate morphology is observed in thin sections. Some highly fractured crystals of ariegilatite are up to 0.5 × 0.1 mm. The mineral is colorless, transparent, with white streaks and vitreous luster. It does not show pronounced cleavage on {001} as usual for other members of the group, fracture is irregular. It does not show any fluorescence. Due to the small size of the density was not measured; Dcalc = 3.329 g/cm3. The mineral is optically uniaxial (–), ω = 1.650(2), ε = 1.647(2) (λ = 589 nm), non-pleochroic. The micro-indentation hardness VHN50 = 356 (331–378) kg/mm2, corresponding to 4–4.5 of Mohs scale. The Raman spectrum exhibits the following strong bands (cm–1): 129, 179, 229, and 309 (lattice mode, Ba-O, Ca-O vibrations); 403 [ν2(SiO4)4–]; 427 [ν2(PO4)2–]; 520 [ν4(SiO4)4–]; 569 and 591 [ν4(PO4)3–]; 834 and 874 [ν1(SiO4)4–]; 947 [ν1(PO4)3–]; 993 [ν1SO4)2–]; 1030 [ν3(PO4)3–]; 1066 [ν1(CO3)2–]. Raman spectroscopy data indicate that H2O is absent in ariegilatite. The average of 22 WDS electron probe analyses [wt%, (range)] is: SO3 0.17 (0.05–0.31), V2O5 0.1 (0–0.17), P2O5 9.83 (8.96–10.55), TiO2 0.12 (0.05–0.25), SiO2 19.87 (19.52–20.42), Al2O3 0.12 (0.07–0.18), BaO 12.26 (12.14–12.41), FeO 0.32 (0.24–0.46), MnO 0.29 (0.09–0.39), CaO 53.84 (53.19–54.40), MgO 0.14 (0.11–0.22), K2O 0.04 (0–0.10), Na2O 0.22 (0.16–0.36), F 3.17 (2.96–3.34), CO2 0.57 (calculated on charge balance), –O=F2 1.33, total 99.72. The empirical formula based on 13 non-tetrahedral cations pfu is (Ba0.98K0.01Na0.01)Σ1(Ca11.77Na0.08Fe0.062+Mn0.052+Mg0.04)Σ12[(Si3.95Al0.03Ti0.02)Σ4O16] [(P1.70C0.16Si0.10S0.036+V0.01)Σ2O8]F2.04O0.96⁠. The strongest lines in the calculated X-ray powder diffraction pattern are [dcalc Å (Icalc%; hkl)]: 3.578 (51; 210), 3.437 (45; 1.0.10), 3.090 (100; 221), 2.822 (82; 219), 2.754 (62; 0.0.15), 2.743 (51; 227), 1.983 (47; 2.2.16), 1.789 (92, 420). Single-crystal X-ray studies on a crystal of 0.038 × 0.032 × 0.025 mm show the mineral is trigonal, space group R3m, a = 7.1551(6), c = 41.303(3) Å, V = 1831.2 Å3, Z = 3. The crystal structure of ariegilatite was refined to R1 = 0.0191 for 822 I>2σ(I) unique reflections. It exhibits a modular an intercalated antiperovskite structure derived from hatrurite (Ca3SiO5), and it is most easily described as a 1:1 stacking of the two modules: one triple antiperovskite module {[F2OCa12](SiO4)4}4+ and {Ba(PO4)2}4– along [001]. In the module {[F2OCa12](SiO4)4}4+, the sites F1 and O7 are coordinated by six Ca atoms in an octahedral arrangement forming three (001) layers. The module {[F2OCa12](SiO4)4}4+ can be also described as consisting of columns formed by Ca-triplets Ca3O14, rotated relative to each other by 60°; Ca-triplets form four layers with (SiO4)4– tetrahedra in structural cavities. The module {Ba(PO4)2}4– is characterized by (P1O4) tetrahedra connected to six-coordinated Ba1. The name honors Arie Gilat (b. 1939), retired from the Geological Survey of Israel, where he was involved in geological mapping, tectonics and geochemical studies for more than 30 years. The holotype is deposited in the Fersman Miner-alogical Museum, Moscow, Russia. F.C.Comments: According new nomenclature recently approved by CNMNC IMA ariegilatite along with nabimusaite and dargaite (see abstract below) belongs to arctite group of arctite supergroup. Citation: R. Miyawaki, F. Hatert, M. Pasero, and S.J. Mills (2020) CNMNC Newsletter No. 54, Mineralogical Magazine, 84(2), 359–365.D. Nishio-Hamane, T. Tanaka, and T. Minakawa (2018) Aurihydrargyrumite, a natural Au6Hg5 phase from Japan. Minerals, 8(9), 415.D. Nishio-Hamane, T. Tanaka, and T. Minakawa (2018) Aurihydrargyrumite, a natural Au6Hg5 phase from Japan. Minerals, 8(9), 415.Aurihydrargyrumite (IMA 2017-003), Au6Hg5, hexagonal, is a new mineral, a natural amalgam, discovered in a placer in the middle of Oda River at Iyoki, Uchiko, Ehime Prefecture, Shikoku Island, Japan. Oda River valley developed in Sanbagawa metamorphic sequence. The small quartz vein that included the gold- and mercury-bearing mineralization was found in the area being a possible source. Other minerals in placer include ilmenite, magnetite, chromite, zircon, scheelite, gold, iridium, osmium, and irarsite. Aurihydrargyrumite forms through the weathering of mercury-bearing placer gold by involvement of self-electrorefining. It occurs as a complete or partial silvery coating up to 2 µm thick on gold particles. The coatings consist of commonly anhedral and occasionally subhedral hexagonal-like crystals up to 2 µm formed by {001} and {100} or {110}. The mineral has metallic luster, silvery white streak, Mohs hardness ~2.5 and ductile and malleable tenacity. Other properties were not determined due to small size of the crystals; Dcalc = 16.86 g/cm3. The averages of five electron probe EDS analyses obtained on each of: natural surface of aurihydrargyrumite layer/“gold-rich” zone underneath that layer/core of gold particles [wt% (range)] are Au 54.92 (54.26–55.76)/96.82 (95.47–98.73)/88.20 (88.15–88.87), Ag 0.0/0.0/9.90 (9.83–10.04), Hg 47.50 (46.54–48.91)/2.96 (1.41–4.60)/1.69 (1.28–2.17), total 102.42/99.78/99.79. The high total explained by irregular surface topography. The empirical formula of aurihydrargyrumite based on 11 Au+Hg, is Au5.95Hg5.05. The strongest lines in the powder X-ray diffraction pattern [d Å (I%; hkl)] are: 2.877 (29; 112), 2.597 (23; 202), 2.434 (42; 113), 2.337 (100; 104), 2.234 (87; 211), 1.401 (39; 314), 1.301 (41; 404), 1.225 (65; 217). The unit-cell parameters refined from the powder data are a = 6.996(1) Å, c = 10.154(2) Å, and V = 430.40 Å3, Z = 10. Aurihydrargyrumite is hexagonal, P63/mcm. The crystal structure of aurihydrargyrumite contains one Au site and two Hg sites. Each distinct site forms a sheet in the ab plane. Atoms of the Au sheets form triangular trimers arranged in a triangular net. The Hg atoms form a ditrigonally distorted Kagome net in the Hg1 sheets, but a honeycomb net in the Hg2 sheets. Two Au sheets and one Hg1 sheet form a compound Au–Hg1–Au layer and the next such layer is rotated 60° around the c-axis. The Hg2 sheets occur between these layers. Aurihydrargyrumite is identical to the synthetic Au6Hg5. Another hexagonal natural amalgam weishanite (Au,Ag)3Hg2 has unit-cell parameters identical to the synthetic phase Au3Hg. The third natural amalgam Au94–88Hg6–12 referred as UM1992-08-E:AuHg (Smith and Nickel 2007) reported to be monoclinic (Des-borough and Foord 1992). The mineral name reflects the Latin roots for its components: aurum (gold) and hydrargyrum (mercury). The type specimen has been deposited in the collections of the National Museum of Nature and Science, Japan. D.B.W.L. Griffin, S.E.M. Gain, L. Bindi, V. Toledo, F. Cámara, M. Saunders, and S.Y. O'Reilly (2018) Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, Northern Israel. Minerals, 8(12), 601.W.L. Griffin, S.E.M. Gain, L. Bindi, V. Toledo, F. Cámara, M. Saunders, and S.Y. O'Reilly (2018) Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, Northern Israel. Minerals, 8(12), 601.Carmeltazite (IMA 2018-103), ideally ZrAl2Ti4O11, orthorhombic, is a new mineral species discovered in pockets of trapped melt interstitial to, or included in, skeletal corundum crystals found in the pyroclastic ejecta in mafic to ultramafic upper Cretaceous volcanic rocks and in associated alluvial placers near Mt Carmel, Kishon River, near Haifa, northern Israel. The associated minerals include tistarite, corundum, anorthite, osbornite, spinel, unnamed REE phase in a matrix of Ca-Mg-Al-Si-O glass. The basaltic(?) silicate melts parental to this assemblage had previously been desilicated by the exsolution of immiscible Fe-Ti oxide melts and Fe-Ti-Zr-silicide melts (found also as inclusions in carmeltazite), crystallization of moissanite and khamrabaevite at fO2 = ΔIW-6 or less, and later (with lowering fO2), osbornite, khamrabaevite, and unnamed TiB2, TiO, and TiN. Carmeltazite hosting corundum aggregates thought to have formed near the crust-mantle boundary (~30 km depth), in the presence of excess volatiles dominated by mantle-derived CH4+H2. This recently has been verified by the discovery of the first natural hydride in the same Israeli volcanic xenocrysts. Carmeltazite assemblage shows some analogies with those observed in calcium-aluminum inclusions (CAIs) in carbonaceous chondrites although crystallization conditions at Mt Carmel being similar to that of CAIs in terms of temperature and fO2 appears to be higher by pressures, ca. 1 GPa. Carmeltazite forms black metallic crystals, up to 80 µm by a few micrometers thick, with a reddish streak. In reflected light, carmeltazite is weakly pleochroic from dark brown to dark green, weakly to moderately bireflectant with no internal reflections. It is anisotropic without characteristic rotation tints. Reflectance values for the COM wavelengths [Rmin, Rmax (%) λ nm] are: 21.8, 22.9 (471.1); 21.0, 21.6 (548.3), 19.9, 20.7 (586.6); and 18.5, 19.8 (652.3). Other physical properties were not determined due to small amount of available material; Dcalc = 4.122 g/cm3 (for ideal formula). The average of eight spot electron probe WDS analyses [wt% (range)] is SiO2 1.50 (1.24–1.70), ZrO2 24.9 (23.7–27.9), HfO2 0.53 (0.48–0.67), UO2 0.16 (0–0.40), ThO2 0.06 (0–0.13), Al2O3 18.8 (18.0–20.1), Cr2O3 0.02 (0–0.08), Ti2O3 50.6 (48.8–52.2), Sc2O3 0.76 (0.59–1.24), Y2O3 0.39 (0.30–0.51), MgO 1.89 (1.50–2.93), CaO 0.51 (0.29–1.45), total 100.12. The empirical formula based on 11 O pfu is (Ti3.603+Al1.89Zr1.04Mg0.24Si0.13Sc0.063+Ca0.05Y0.02Hf0.01)Σ7.04O11⁠. The main X-ray powder diffraction lines [d Å (I/%; hkl)] are: 5.78 (20; 201), 5.04 (65; 002, 011), 4.09 (60; 211), 2.961 (100; 312), 2.885 (40; 411), 2.732 (30; 303), 2.597 (20; 221), 2.051 (25; 404), 2.047 (60; 422), 1.456 (30; 026). The unit-cell parameters refined from powder XRD data are a = 14.076(2), b = 5.8124(8), c = 10.0924(9) Å, V = 825.7 Å3. The single-crystal XRD data obtained on a crystal 0.060 × 0.075 × 0.080 mm shows carmeltazite is orthorhombic, space group Pnma, a = 14.0951(9), b = 5.8123 (4), c = 10.0848 (7) Å, V = 826.2 Å3, Z = 4. The crystal structure was refined to a final R1 = 0.0216 for 1165 observed reflections with Fo > 4σ(Fo) and is close to that of a defective spinel with stoichiometry M7O11 instead M9O12 in spinel. The stacking of oxygen layers is not a cubic-close-packing yielding a standard ABCABC sequence along [111] but is hexagonal sequence ABACBC along [100] with two central layers shifted changing coordination of some atoms. This structural topology is known for the synthetic compounds Ba2Ti9,25Li3O22, SrLiCrTi4O11, and SrLiFeTi4 O11. The M1 site in carmeltazite has a pyramidal 1+4 coordination with occupation (Al0.68Mg0.22Sc0.043+Ca0.03Y0.02Hf0.01)⁠. The occupation of 4 octahedral sites is: M2−(Zr0.854+Ti0.153+);M3−Ti1.003+;M4−(Ti0.863+Al0.14);M5−(Ti0.873+Al0.13)⁠; For tetrahedral site it is (Al0.87Si0.13). Considering the multiplicity of the sites, the empirical formula based on structure refinement is (Ti3.753+Al1.94Zr0.85Mg0.22Si0.14Sc0.043+Ca0.03Y0.02Hf0.05)Σ7.00O11⁠. The name carmeltazite derives from Mt Carmel and from the dominant metals present in the mineral, i.e., titanium, aluminum, and zirconium (“TAZ”). The holotype specimen is deposited in the Museo di Storia Naturale, Università degli Studi di Firenze, Florence, Italy. D.B.H.-J. Förster, L. Bindi, G. Grundmann, and C.J. Stanley (2018) Cerromojonite, CuPbBiSe3, from El Dragón (Bolivia): A new member of the bournonite group. Minerals, 8(10), 420.H.-J. Förster, L. Bindi, G. Grundmann, and C.J. Stanley (2018) Cerromojonite, CuPbBiSe3, from El Dragón (Bolivia): A new member of the bournonite group. Minerals, 8(10), 420.Cerromojonite (IMA 2018-049), ideally CuPbBiSe3, orthorhombic, is a new selenide of bournonite group, Se-analogue of součekite CuPbBi(S,Se)3. It was discovered at the El Dragón mine, Department of Potosí, Bolivia, and named for Cerro Mojon, the highest mountain peak in the area. A multi-phase assemblage of primary and secondary selenides occurs in a single vein of 0.5 to 2 cm thick in a shear zone cutting series of thinly stratified, pyrite-rich black shales, and reddish-gray, hematite-bearing siltstones. Phases similar to cerromojonite were previously described at El Dragón (phase “C” of Förster et al. 2016) and, as tiny inclusions intimately intergrown with berzelianite, in carbonate veins of the U–Se–polymetallic deposit Schlema–Alberoda, Erzgebirge, Germany (Dymkov et al. 1991). However, no structural data were provided. At El Dragón cerromojonite found in two different mineral assemblages deposited from low-T hydrothermal fluids with fSe/fS ratio >1. In the first one it occurs as grains up to 30 µm in the interstices of quijarroite/hansblockite intergrowths (forming an angular network-like intersertal texture), partly together with penroseite, klockmannite, watkinsonite, clausthalite, rarely petrovicite. These aggregates cemented by umangite and klockmannite and deposited at the surfaces of krut'aite–penroseite. In the second, cerromojonite occurs within lath-shaped or acicular aggregates up to 2 mm × 200 µm, interpreted as pseudomorphs after the above described intersertal aggregates. It forms elongated thin-tabular crystals (up to 200 × 40 µm), in subparallel intergrowths with watkinsonite or quijarroite, clausthalite, nickeltyrrellite, and not defined selenides, all cemented by klockmannite. The appearance of the cerromojonite grains resembles a spinifex texture, indicating fast crystallization. These aggregates are deposited in interstices in brecciated krut'aite–penroseite grains. All minerals of this association are altered by late klockmannite, fracture-filling chalcopyrite, covellite, goethite, petříčekite and krut'aite, and native selenium. Cerromojonite is black, opaque, with a metallic luster and black streak. It is brittle, with an irregular fracture, and no obvious cleavage and parting. Density and hardness were not measured due to small grain size; Dcalc = 7.035 g/cm3. In reflected light, cerromojonite is weakly pleochroic gray to cream-white with no internal reflections. It is weakly anisotropic, with rotation tints in shades of brown and gray. Lamellar twinning on {110} is common. The reflectance values in air (R1, R2, nm) are (COM wavelengths are bolded): 47.0, 48.0, 400; 47.2, 48.6, 420; 47.5, 49.3, 440; 47.8, 50.0, 460; 48.8, 50.3, 470; 48.1, 50.6, 480; 48.3, 51.1, 500; 48.3, 51.5, 520; 48.3, 51.7, 540; 48.2, 51.8, 546; 48.1, 51.9, 560; 47.9, 52.0, 580; 47.8, 52.0, 589; 47.7, 52.1, 600; 47.5, 52.1, 620; 47.3, 52.0, 640; 47.2, 52.0, 650; 47.1, 51.9, 660; 46.9, 51.7, 680; 46.8, 51.6, 700. The average of 24 spot electron probe WDS analyses [wt% (range)] is: Cu 7.91 (7.40–8.16), Ag 2.35 (2.16–2.54), Hg 7.42 (7.19–7.60), Pb 16.39 (16.15–16.77), Fe 0.04 (0–0.18), Ni 0.02 (0–0.18), Bi 32.61 (32.19–32.91), Se 33.37 (32.93–33.81), total 100.11. No concentrations of Co, As, Sb, and S were detected. The empirical formula based on 6 apfu is (Cu0.89Hg0.11)Σ1.00(Pb0.56Ag0.16Hg0.15Bi0.11Fe0.01)Σ0.99Bi1.00Se3.01. The strongest X-ray powder diffraction lines [d Å (I%; hkl)] are: 4.00 (20; 002), 3.86 (25; 120), 2.783 (100; 122), 2.727 (55; 212), 2.608 (40; 310), 1.999 (25; 004), 1.992 (20; 330), 1.788 (20; 412). The unit-cell values refined from the powder data are a = 8.2004(6), b = 8.7461(5), c = 8.0159 Å, V = 574.91 Å3. The single-crystal X-ray data obtained on the crystal fragment 0.040 × 0.055 × 0.060 mm shows cerromojonite is orthorhombic, space group Pn21m, a = 8.202(1), b = 8.741(1), c = 8.029(1) Å, V = 575.7 Å3, Z = 4. The crystal structure was refined to R1 = 0.0256 for 701 Fo>4σ(Fo) reflections (0.0315 for all 1359 unique reflections). It is identical to those of other members of the bournonite group and consists of [7, 9]Pb-polyhedra, [3+2, 3+3]Bi-polyhedra, and CuSe4 tetrahedra, which share corners and edges to form a three-dimensional framework; CuSe4 tetrahedra share corners to form chains parallel to [001]. The site populations were determined giving crystallochemical empirical formula [Cu0.88Hg0.12]Bi[Pb0.56Ag0.16Hg0.14Bi0.110.04]Se3 in good agreement with observed bond distances and chemical data. The X-rayed crystal is preserved at the Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Italy. The polished section (holotype) is housed in the Natural History Museum, London. Another polished section (cotype) is deposited in the Mineralogical State Collection Munich (Mineralogische Staatssammlung München, Museum “Reich der Kristalle”), Germany. D.B.I.O. Galuskina, F. Gfeller, E.V. Galuskin, T. Armbruster, Y. Vapnik, M. Dulski, M. Gardocki, L. Jeżak, and M. Murashko (2019) New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks. Part IV: Dargaite, BaCa12(SiO4)4(SO4)2O3, from Nahal Darga, Palestinian Autonomy. Mineralogical Magazine, 83(1), 81–88.I.O. Galuskina, F. Gfeller, E.V. Galuskin, T. Armbruster, Y. Vapnik, M. Dulski, M. Gardocki, L. Jeżak, and M. Murashko (2019) New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks. Part IV: Dargaite, BaCa12(SiO4)4(SO4)2O3, from Nahal Darga, Palestinian Autonomy. Mineralogical Magazine, 83(1), 81–88.Dargaite (IMA 2015-068), ideally BaCa12(SiO4)4(SO4)2O3, trigonal, is a new member of the arctite group. It was originally found along with isostructural nabimusaite in pyrometamorphic larnite rocks at the Jabel Harmun, Palestinian Autonomy (Galuskin et al. 2015). The discovery of larger grains (up to 30–40 µm in aggregates up to 100–150 µm) in larnite pebbles within larnite pseudoconglomerates at the Hahal Darga, Judean Mts, West Bank, Palestinian Autonomy (31°36.5′N, 35°22.7′E) allowed complete description of dargaite, which was named for its locality. Beside dargaite six new minerals of the arctite supergroup with modular intercalated antiperovskite structures derived from hatrurite Ca3(SiO4)O have been recently discovered in pyrometamorphic rocks of the Hatrurim Complex (“Mottled zone”) distributed along the Dead Sea Rift in the territories of Israel, Palestinian Autonomy, and Jordan. Namely (arctite group): nabimusaite KCa12(SiO4)4(SO4)2O2F, ariegilatite BaCa12(SiO4)4(PO4)2OF2 (see abstract above), and (zadovite group): zadovite BaCa6[(SiO4)(PO4)](PO4)2F, aradite BaCa6[(SiO4)(VO4)](VO4)2F, gazeevite BaCa6(SiO4)2(SO4)2O, stracherite BaCa6(SiO4)2[(PO4)(CO3)]F. Dargaite was also found in larnite rocks of the Hatrurim Complex at Ma'ale Adumim, Palestinian Autonomy and in altered carbonate xenolith (as very rare grains ~30 µm with larnite, spurrite, fluorellestadite, gazeevite, hydrocalumite, and chlormayenite) from the lava bed of the Shadi-Khokh volcano, Southern Ossetia. The formation of dargaite is related to the local pyrometamorphic by-products (gases, fluids, and melts) transforming earlier mineral associations at ∼ 900 °C. In the holotype specimen larnite, fluorellestadite–fluorapatite, brownmillerite, fluormayenite–fluorkyuygenite, and ye'elimite are the main minerals; ternesite, shulamitite and periclase are noted rarely. Dargaite, nabimusaite and gazeevite occur in linear zones with higher porosity within larnite rocks. Pores are filled with ettringite and Ca-hydrosilicates, less commonly with gibbsite, brucite, baryte, katoite, and calciolangbeinite. Dargaite is colorless, transparent with a white streak and a vitreous luster. It exhibits pronounced parting and imperfect cleavage on {001}. The micro-indentation hardness VHN = 423 (380–492) kg/mm2 corresponds to ∼ 4.5–5.5 of the Mohs scale. Density was not measured due to abundant tiny inclusions of larnite and ye'elimite; Dcalc = 3.235 g/cm3. Dargaite is non-pleochroic, optically uniaxial (–), ω = 1.643(3), ε = 1.639(3) (589 nm). Raman spectra of the holotype and dargaite from Ma'ale Adumim and Shadil-Khokh correspond to those of Ba-bearing nabimusaite and contain main bands at (cm–1): 70, 122, 129, 263, and 323 (lattice mode, Ba–O, Ca–O vibrations); 401 [ν2(SiO4)4–]; 464 [ν2(SO4)2–]; 523 [ν4(SiO4)4–]; 563 [ν4(PO4)3–]; 641, 644 [ν4(SO4)2–]; 829, 869 [ν1 of two types of (SiO4)4–]; 947 [ν1(PO4)3–](absent for dargaite from Shadil-Khokh with low P content); 991 [ν1(SO4)2–]; 1078–1080 [ν1(CO3)2–]; 1116 [ν3(SO4)2–]; ~2270, 2476, 3474, 3630 (overtones or combinational bands). The averages of electron probe WDS analysis of dargaite from Nahal Darga (22)/Ma'ale Adumim (16)/Shadil-Khokh (3) are [wt% (range)]: Na2O 0.12 (0.08–0.15)/0.25 (0.18–0.28)/0.04; K2O 0.94 (0.85–1.04)/1.11 (0.54–1.35)/0.73; MgO 0.14 (0.10–0.18)/0.09 (0.06–0.11)/0.06; CaO 55.73 (55.17–56.73)/57.19 (56.44–58.02)/56.30; SrO n.d./n.d./0.20; BaO 9.21 (8.35–9.93)/8.19 (7.49–9.78)/10.12; Al2O3 0.45 (0.34–0.56)/0.90 (0.73–1.20)/0.32; Fe2O3 n.d./0.20 (0–0.36)/0.30; SiO2 18.26 (17.74–18.76)/18.74 (18.28–19.39)/19.30; TiO2 0.18 (0.13–0.25)/0.13 (0.08–0.19)/0.47; P2O5 2.90 (2.70–3.36)/2.56 (1.71–4.33)/0.30; SO3 11.25 (9.15–11.48)/11.12 (9.23–11.78)/12.21; F 0.72 (0.64–0.86)/1.32 (0.97–1.53)/0.66;–O=F2 0.30/0.45/0.28; CO2 (calculated) 0.12/0.11/0.41; Total 99.71/101.34/101.14. The empirical formulae based on 19 cations pfu are accordingly: A(Ba0.72K0.24Na0.04)Σ1.00B(Ca11.95Mg0.04Na0.01)Σ12.00T1([SiO4]3.65[PO4]0.21[AlO4]0.11[Ti4+O4]0.03)Σ4.00T2([SO4]1.69[PO4]0.28[CO3]0.03)Σ2.00W1(O0.54F0.46)Σ1.00W2O2/ A(Ba0.63K0.28Na0.10)Σ1.01B(Ca11.97Mg0.03)Σ12.00T1([SiO4]3.66 [PO4]0.08[AlO4]0.21[Fe3+O4]0.03[Ti4+O4]0.02)Σ4.00T2([SO4]1.63[PO4]0.34[CO3]0.03)Σ2.00W1(F0.81O0.19)Σ1.00W2O2/ A(Ba0.79K0.19Sr0.02Na<0.01)Σ1.00B(Ca11.97Mg0.02Na0.01)Σ12.00T1([SiO4]3.81[AlO4]0.08[Ti4+O4]0.07[Fe3+O4]0.05)Σ4.00T2([SO4]1.82[CO3]0.11[PO4]0.05[SiO4]0.02)Σ2.00W1(O0.59F0.41)Σ1.00W2O2. (* see Comment.) The strongest lines in the calculated X-ray powder diffraction pattern are [dcalc Å (Icalc%; hkl)]: 3.103 (100; 221), 2.753 (95; 027), 2.750 (88; 0.0.15), 2.665 (63; 028), 2.141 (43; 2.2.14), 1.797 (240), 1.539 (58; 3.3.18). Single-crystal XRD data obtained on a crystal of ∼ 0.03 × 0.03 × 0.02 mm shows dargaite is trigonal, space group R3m, a = 7.1874(4), c = 41.292(3) Å, V = 1847.32 Å3, Z = 3. The crystal structure was refined to R1 = 0.0376 for 396 I>2σ(I) unique reflections. The structure is formed by three-layered antiperovskite modules {O3Ca12(SiO4)4}2+ interstratified with Ba(SO4)22− layers along [001]. The former consists of columns of three face-sharing antiperovskite [OCa6] octahedra extended along [001] and interconnected through SiO4 tetrahedra while in the latter SO4 tetrahedra connected to six-coordinated Ba. Dargaite belongs to the arctite structural type with the structural formula AB16B26[(T1O4)2(T2O4)2] (T3O4)2W12W2. The main isomorphic scheme in the nabimusaite–dargaite series is AK+ + WF– → ABa2+ + WO2–, in the dargaite–ariegilatite series: T(SO4)2– + WO2– → T(PO4)3– + WF–, and in the nabimusaite–ariegilatite series: KTA(SO4)23−+O2−W→BaTA(PO4)24−+F−W⁠. Isomorphic substitutions in the tetrahedral layer A(TO4)2 of this series are balanced by the O/F ratio variation within the antiperovskite modules. According a new structure model for dargaite and nabimusaite, F enters to the О7Са6 octahedra of external antiperovskite layers (site W1). Type material has been deposited in the Fersman Mineralogical Museum Russian Academy of Sciences, Moscow, Russia. D.B.Comment: The empirical formulae above are calculated based on the structure model with F assigned to central antiperovskite layer. Considering a new model with F at the external antiperovskite layers the corresponding parts of empirical formulae should be written as W1(O1.54F0.46)Σ2.00W2O/W1(O1.19F0.81)Σ2.00W2O/W1(O1.59F0.41)Σ2.00W2O, accordingly.T.A. Olds, J. Plášil, A.R. Kampf, A. Simonetti, L.R. Sadergaski, Yu-S. Chen, and P.C. Burns (2017) Ewingite: Earth's most complex mineral. Geology, 45(11), 1007–1010.T.A. Olds, J. Plášil, A.R. Kampf, A. Simonetti, L.R. Sadergaski, Yu-S. Chen, and P.C. Burns (2017) Ewingite: Earth's most complex mineral. Geology, 45(11), 1007–1010.Ewingite (IMA 2016-012), Mg8Ca8(UO2)24(CO3)30O4(OH)12(H2O)138, tetragonal, is a new uranyl carbonate mineral considered to be the most structurally complex mineral known. It was discovered on a damp wall in the abandoned Plavno mine in the Jáchymov ore district, western Bohemia, Czech Republic. The uranium was mined in this area over 100 years. Ewingite is a secondary mineral resulted from postmining oxidation of primary uraninite in wet environment similar to other uranyl carbonates which may form on uranium mine tailings, nuclear waste in repositories or nuclear reactor meltdown products. Ewingite forms aggregates of equant golden-yellow crystals up to 0.2 mm on altered uraninite, with other uranyl carbonate minerals, including liebigite, metazellerite and unnamed Ca-Cu uranyl carbonate. Ewingite crystals are transparent, with a vitreous luster a pale-yellow streak. No twinning was observed. The mineral is non-fluorescent under UV radiation. It is brittle with uneven fracture and no discernable cleavage. The Mohs hardness is estimated as ~2. The density was not measured due to the limited availability of material; Dcalc = 2.543 g/cm3 (2.525 for an ideal formula). The mineral is very weakly anisotropic (practically isotropic), optically uniaxial, neutral, ω = ε = 1.537 (white light). The Raman spectrum bands are (cm–1, b – broad, s – strong, w – weak, sh – shoulder): 1379, 1344, 1250 [ν3(CO3)2– antisymmetric stretching]; 1095, 1107sh, 1087sh [split ν1(CO3)2– symmetric stretching]; 832s [ν1(UO2)2+ symmetric stretching]; 761, 751sh, 687, 668, 636 [ν4(δ)(CO3)2– in-plane bending]; weak 340, 329, 317, 243, 203 [ν2(δ) (UO2)2+ bending]; <200 (lattice modes). FTIR spectrum shows: ~3200b, 3500sh, 3350sh (ν O–H stretching of H2O); 1630w [ν2(δ) H2O bending]; 1494, 1505sh, 1332, 1440sh [ν3(CO3)2– antisymmetric stretching]; 1108w [split ν1(CO3)2– symmetric stretching]; 918s [ν3(UO2)2+ antisymmetric stretching]; 771 [ν4(δ)(CO3)2– in-plane bending]. Obtained microprobe data were not reliable due to difficulty of preparation and vacuum behavior of highly hydrated crystals. The concentrations of U, Mg, Mn, and Ca were determined by means of HR-ICP-MS as a ratio relative to uranium. The mean U/cation ratio values are: Mg 3.042 (2.857–3.158); Ca 3.122 (2.915–3.507); Mn 70.240 (61.731–79.446); U 1.000. Direct determinations of H2O and CO2 content were not done due to the paucity of material. The presence of (CO3)2– and H2O was confirmed by Raman and FTIR spectroscopy. The empirical formula calculated on the basis of 24 U, 292 O, and 30 CO3 pfu (from crystal structure constrains) with charge balanced by adding hydrogen is: (Mg7.89Ca7.69Mn0.34)Σ15.92(UO2)24 (CO3)30O4(OH)11.84(H2O)138.16. Oxides wt% calculated from the mean apfu values are: MgO 2.75, CaO 3.73, MnO 0.21, UO3 59.41, CO2 11.43, H2O 22.47; total 100%. The strongest reflections in the X-ray powder diffraction pattern are [d Å (I%; hkl)]: 17.8 (19; 200), 14.3 (31; 202), 10.1 (74; 312, 204), 8.28 (100; 402, 314), 6.61 (24; 512, 424, 316), 6.03 (30; 008), 5.69 (36; multiple), 4.774 (29; 606). The unit-cell parameters refined from the powder data with whole pattern fitting are a = 35.624(10), c = 48.449(13) Å, V = 61485 Å3. The single-crystal X-ray diffraction data obtained using synchrotron radiation on a crystal 66 × 44 × 11 µm shows ewingite is tetragonal, space group I41/acd, a = 35.142(2), c = 47.974(3) Å, V = 59245 Å3, Z = 8. The crystal structure of ewingite (refined to R1 = 15.15% for 1394 Iobs>4σ(I) reflections) contains nanometer-scale anionic uranyl carbonate cages constructed by combination of three fundamental building units (FBU). FBU-1 is a triplet of UO7 pentagonal bipyramids with a single O atom bonded to all three uranyl polyhedra, and bipyramids each sharing two of their equatorial edges with two other bipyramids. In FBU-2 uranyl ion is coordinated by three carbonate triangles in the equatorial edges of UO8 hexagonal bipyramid. In FBU-3 uranyl ion is coordinated by 2 carbonate triangles and 2 H2O groups in the equatorial region of a hexagonal bipyramid. Linkages between the FBUs within the cage are through carbonate groups. Each cage requires 24 uranyl polyhedra with 6 Ca, 2 Mg cations, and H2O groups inside the cages. The uranyl carbonate cages are linked to other cages by bonds to Ca and Mg cations, and H bonds of H2O groups. The interstitial components typically exhibit partial occupancy and disorder. There are 8 symmetrically equivalent cages in the unit cell. The discovery of ewingite suggests that nanoscale uranyl carbonate cages could be aqueous species in some systems, and these may affect the geochemical behavior of uranium. The complexity of crystal structure is count as the information content of the unit cell. The value for ewingite is 12 684.86 bits per unit cell (most high among minerals so far) as determined by the single-crystal XRD analysis which does not provide locations of some of the disordered H2O groups or any of the H atoms in the structure. The total information content is ~23 000 bits/unit cell when all unit cell constituents are accounted. The mineral name honors of Rodney C. Ewing (b. 1946) mineralogist and material scientist focused on the properties of nuclear materials at Stanford University, California, U.S.A. The holotype specimen is deposited in the Natural History Museum of Los Angeles County, U.S.A. D.B.F. Demartin, I. Campostrini, P. Ferretti, and I. Rocchetti (2018) Fiemmeite Cu2(C2O4)(OH)2·2H2O, a new mineral from Val di Fiemme, Trentino, Italy. Minerals, 8(6), 248F. Demartin, I. Campostrini, P. Ferretti, and I. Rocchetti (2018) Fiemmeite Cu2(C2O4)(OH)2·2H2O, a new mineral from Val di Fiemme, Trentino, Italy. Minerals, 8(6), 248Fiemmeite (IMA 2017-115), ideally Cu2(C2O4)(OH)2·2H2O, mono-clinic, was discovered NE of the Passo di San Lugano, Val di Fiemme, Carano, Trento, Italy (46.312° N, 11.406° E) and was named for its type locality. It occurs in coalified wood trunks at the base of the Val Gardena Sandstone (upper Permian) which were permeated by mineralizing solutions containing Cu, U, As, Pb and Zn. The mineralization is referable as “sandstone-uranium type” roll front deposits. The oxalate anions have originated from diagenesis of the plant remains included in sandstones. Fiemmeite is associated with baryte, olivenite, middlebackite, moolooite, brochantite, cuprite, devilline, malachite, azurite, zeunerite/metazeune-rite, tennantite, chalcocite, galena. The mineral forms aggregate up to 1 mm across of sky-blue platelet crystals up to ~50 µm. The streak is pale blue, and the luster is from vitreous to waxy. It is brittle with uneven fracture and almost perfect cleavage parallel to {010} or {001}. Hardness was not determined; Dmeas = 2.78(1) g/cm3 and Dcalc = 2.802 g/cm3. Fiemmeite is highly birefringent with minimum and maximum refractive indexes 1.54 and 1.90. No other optical properties obtained; ncalc = 1.64. The Raman spectrum shows bands (cm–1): 3471, 3438 (consistent with the range of hydrogen bond lengths found 2.655–2.903 Å); 1683, 1705 (νa C=O); 1457 (νs C–O + νs C–C); 903, 853 (νs C–O + δ O–C=C); 466, 517, 543 (ν Cu–O + ν C–C); 298 (out-of-plane bends and to lattice modes). The average chemical composition (number of analysis not specified) [wt% (range)] is Cu 44.00 (43.79–44.24), Zn 0.09 (0.06–0.12) (Cu and Zn by electron probe EDS analyses); O 44.40, C 8.34, H 2.10; total 98.93. The values for O, C, and H are calculated for theoretical empirical formula based on 8 anions: Cu2.00Zn<0.01(C2O4)(OH)2·2H2O. Crystals rapidly decompose under an electron beam even using low voltage current and a wide beam. The presence of H2O and C2O3 was confirmed by crystal structure analysis and Raman spectroscopy. No other significant element quantities were detected. The strongest reflections in the X-ray powder diffraction pattern are: [d Å (I; hkl)] 9.71 (55; 002), 7.02 (28; 012), 5.079 (100; 020), 4.501 (50; 022), 3.072 (58; 112), 2.891 (20; 113), 2.730 (15; 026), 2.686 (25; 114). The unit-cell parameters refined from powder XRD are a = 3.4345(5), b = 10.159(2), c = 19.412(3) Å, β = 90.83(1), V = 677.5 Å3. The single-crystal X-ray data shows fiemmeite is monoclinic, space group: P21/c, a = 3.4245(6), b = 10.141(2), c = 19.397(3) Å, β = 90.71(1)°, V = 673.6 Å3, Z = 4. The crystal structure was refined to R1 = 0.0386 for 1942 observed [I>2σ(I)] reflections with all the hydrogen atoms located from a Difference-Fourier map. The asymmetric unit contains two independent Cu2+ cations that display a distorted square-bipyramidal (4+2) coordination, one oxalate anion, two hydroxyl anions, and two water molecules. The coordination polyhedra of the two copper atoms share common edges to form polymeric rows with composition [Cu2(C2O4)(OH)2·2H2O]n running along [100]. These rows are held together by hydrogen bonds between the oxalate oxygens not involved in the coordination to copper, the hydrogen atoms of the water molecules and the hydroxyl anions. A portion of that kind polymeric rows is reported in the structure of middlebackite Cu2C2O4(OH)2 where these rows are interconnected to form channels where the hydrogen atoms of hydroxyl groups are located. Holotype of fiemmeite is deposited in the MUSE, Museo delle Scienze di Trento, Trento, Italy. D.B.J. Plášil, A.R. Kampf, J. Sejkora, J. Čejka, R. Škoda, and J. Tvrdý (2018) Horákite, a new hydrated bismuth uranyl–arsenate–phosphate mineral from Jáchymov (Czech Republic) with a unique uranyl-anion topology. Journal of Geosciences, 63, 265–276.J. Plášil, A.R. Kampf, J. Sejkora, J. Čejka, R. Škoda, and J. Tvrdý (2018) Horákite, a new hydrated bismuth uranyl–arsenate–phosphate mineral from Jáchymov (Czech Republic) with a unique uranyl-anion topology. Journal of Geosciences, 63, 265–276.Horákite (IMA 2017-033), ideally (Bi7O7OH)[(UO2)4(PO4)2(AsO4)2 (OH)2]·3.5H2O, monoclinic, is a new uranyl mineral discovered on old private collection specimen from Jáchymov (St. Joachimsthal), Czech Republic (most likely from the Geister vein at Rovnost mine). It is the first uranyl mineral containing both phosphate and arsenate as essential components. Horákite occurs in mylonitized mica-schist containing thin quartz veinlets. It is a supergene alteration mineral associating with phosphuranylite (overgrowing older metatorbernite–metazeunerite) in vugs of the quartz gangue with relics of tennantite and fine-grained uraninite. Horákite forms greenish-yellow to pale yellow transparent to translucent prismatic to bladed crystals elongated on [001] clustering in aggregates up to 1 mm across. The mineral has a light-yellow streak and a vitreous luster. The cleavage is perfect on {100}. The Mohs hardness is ~2. Density was not measured; Dcalc = 6.358 g/cm3. Horákite is nonpleochroic, optically biaxial (+), with α ≈ 1.81, β ≈ 1.84, γ ≈ 1.88 (white light); 2V = 78(1)°, 2Vcalc = 83°; X = b, Z ≈ c. No dispersion observed. The main bands of Raman spectrum (cm–1; w – weak, s – strong, sh – shoulder, b – broad) are: 3580 wb with a shoulder at 3410 (ν O–H stretchings of hydrogen-bonded OH– and H2O); series of weak bands at 1103, 1081, 1069, 1055, 1039 [triply degenerate ν3 antisymmetric stretching of (PO4)3– polyhedra]; 1030–930w [ν1 symmetric stretching of (PO4)3–]; 879 and 864 [ν3(UO2)2+ vibrations]; 850sh, 801s [ν1(UO2)2+ symmetric stretching along with δ–UOH (in-plane) bending modes and the triply degenerate ν3 antisymmetric stretching vibration of AsO4 tetrahedra]; 774 (ν1 symmetric stretching of AsO4); 640–520w (triply degenerate ν4 bending of PO4 tetrahedra and Bi–O stretching); 510–360 (doubly degenerate ν2 bending vibrations, triply degenerate ν3 bending of AsO4, Bi–O stretching and Bi–O–Bi bending vibrations); 380–280 (doubly degenerate ν2 bending of AsO4 and Bi–O stretching); 271sh, 251, 228sh [doubly degenerate ν2 bending vibrations of (UO2)2+ groups];189, 163, 147, 123, 105, 74, and 48 [external lattice vibration modes and (UO2)2+ translations and rotations]. No Raman band was observed where the ν2 (δ) H–O–H bending vibrations should occur. The average of 21 spot electron probe WDS analysis is [wt% (range)]: PbO 0.99 (0–1.75), Bi2O3 50.22 (49.00–51.33), UO3 35.58 (33.47–37.66), SiO2 0.85 (0.60–1.27), P2O5 4.47 (4.09–5.91), As2O5 5.21 (4.28–5.91), H2O (by structure constrains) 2.77, total 100.09. The empirical formula based on 37.5 O apfu is (Bi7.01Pb0.14)O7OH[(U1.01O2)4(P1.03O4)2(As0.74Si0.23O4)2 (OH)2]·3.5H2O. The strongest X-ray powder-diffraction lines are [d Å (I; hkl)]: 11.77 (100; 110), 6.21 (23; 202), 5.55 (23; 310,112), 4.19 (27; 331), 3.54 (61; 510, 423), 3.29 (20; 331), 3.14 (58; 241, 023), 3.02 (98; 150, 113, 533, multiple). The single-crystal X-ray data obtained on a crystal of 0.020 × 0.012 × 0.010 mm show horákite is monoclinic, C2/c, a = 21.374(2), b = 15.451(3), c = 12.168(2) Å, β = 122.26(1)°, V = 3398.1 Å3, Z = 4. The crystal structure refined to R = 0.0595 for 1774 unique observed [Iobs>3σ(I)] reflections. This novel sheet structure contains 2 U sites, 4 Bi sites, 2 T sites jointly occupied by P and As (T1 site dominantly occupied by As5+ while T2 is nearly fully occupied by P 5+), and 20 O sites (of which 3 are OH groups and 4 H2O groups). It consists of topologically unique [(UO2)4(PO4)2(AsO4)2(OH)2] sheets (horákite topology), and an interstitial {(Bi7O7OH)(H2O)3.5} complex. Sheets result from the polymerization of UO7 pentagonal bipyramids by sharing edges to form tetrameric units; tetrahedrally coordinated sites are linked to the UO7 both monodentately (T1 to U1) and bidentately (T2 to U2). The name honors František Horák (1882–1919), the mining engineer, a chief of the radium factory in St. Joachimsthal (Jáchymov) from 1916 to 1918, and his grandson, Vladimír Horák (b. 1964), an amateur mineralogist focused on the mining history of the Jáchymov ore district. The holotype specimen is deposited in the Natural History Museum of Los Angeles County, California, U.S.A. D.B.N.V. Chukanov, N.V. Zubkova, S.N. Britvin, I.V. Pekov, M.F. Vigasina, C. Schäfer, B. Ternes, W. Schüller, Y.S. Polekhovsky, V.N. Ermolaeva, and D.Yu. Pushcharovsky (2018) Nöggerathite-(Ce), (Ce,Ca)2Zr2(Nb,Ti) (Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel Volcanic Region, Germany. Minerals, 8(10), 449.N.V. Chukanov, N.V. Zubkova, S.N. Britvin, I.V. Pekov, M.F. Vigasina, C. Schäfer, B. Ternes, W. Schüller, Y.S. Polekhovsky, V.N. Ermolaeva, and D.Yu. Pushcharovsky (2018) Nöggerathite-(Ce), (Ce,Ca)2Zr2(Nb,Ti) (Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel Volcanic Region, Germany. Minerals, 8(10), 449.Nöggerathite-(Ce) (IMA 2017-107), (Ce,Ca)2Zr2(Nb,Ti) (Ti,Nb)2Fe2+O14, orthorhombic, is a new mineral discovered at the In den Dellen (Zieglowski) pumice quarry, near Mendig, Laach Lake (Laacher See) paleovolcano, Eifel region, Rhineland-Palatinate, Germany. The mineral found in cavities of sanidinite volcanic ejectum with sanidine, dark mica, magnetite, baddeleyite, nosean, and a chevkinite-group mineral. Nöggerathite-(Ce) forms brown to very dark reddish brown, almost black, translucent to transparent prismatic often twinned crystals up to 0.1 × 0.1 × 1.0 mm, elongated by [001] isolated or combined in random aggregates. The crystal forms are: {100}, {010}, {110}, {120}, {111}, and minor {001}. Twinning plane is (130). The mineral has adamantine luster and brownish red streak. It is brittle with uneven fractures and no cleavage. The micro-indentation hardness VHN20 = 615 kg/mm2, corresponding to 5½ of a Mohs scale. The density was not measured; Dcalc = 5.332 g/cm3. In reflected light, nöggerathite-(Ce) is light gray, with reddish brown internal reflections, weakly anisotropic. Pleochroism is not reported. The reflectance values (R1, R2, nm) COM wavelengths are bolded: 17.3, 16.8, 400; 16.8, 16.4, 420; 16.4, 16.0, 440; 16.0, 15.5, 460; 15.8, 15.3, 470; 15.6, 15.2, 480; 15.3, 15.0, 500; 15.3, 14.8, 520; 15.0, 14.7, 540; 15.0, 14.7, 546; 15.0, 14.6, 560; 14.9, 14.6, 580; 14.9, 14.5, 589; 14.8, 14.5, 600; 14.8, 14.5, 620; 14.8, 14.4, 640; 14.8, 14.4, 650; 14.8, 14.4, 660; 14.7, 14.4, 680; 14.7, 14.3, 700. The calculated mean refractive index is 2.267. The Raman spectrum shows bands in the ranges (cm–1): 400–800 [(Ti,Nb,Zr)–O-stretchings]; 100–400 [(REE,Ca)–O-stretching and O–(Ti,Nb,Zr)–O bending vibrations]. Broad features above 900 cm–1 correspond to luminescence due to high amounts of REE. The bands corresponding to hydrogen groups and CO32– anions are absent. The Raman spectrum is similar to that of laachite Ca2Zr2Nb2TiFeO14 in which the bands of (REE,Ca)–O- and (Ti,Nb,Zr)–O-stretching vibrations are shifted towards higher and lower values, respectively. The averages of unspecified number of WDS electron probe analysis for holotype/cotype specimens [wt% (range)] are: CaO 5.45 (5.27–5.55)/5.29 (5.12–5.39), MnO 4.19 (4.07–4.32)/4.16 (4.06–4.34), FeO 7.63 (7.46–7.79)/6.62 (6.23–6.83), Al2O3 0.27 (0.18–0.38)/0.59 (0.48–0.78), Y2O3 0.00/0.90 (0.61–0.99), La2O3 3.17 (3.05–3.28)/3.64 (3.47–3.84), Ce2O3 11.48 (11.27–11.73)/11.22 (10.95–11.69), Pr2O3 1.04 (0.89–1.24)/0.92 (0.90–0.97), Nd2O3 2.18 (2.10–2.34)/2.46 (2.28–2.81), ThO2 2.32 (2.11–2.50)/1.98 (1.79–2.17), TiO2 17.78 (17.45–18.12)/18.69 (18.49–18.90), ZrO2 27.01 (26.82–27.26)/27.69 (27.51–27.86), Nb2O5 17.04 (16.72–17.37)/15.77 (15.53–15.99); total 99.59/99.82. Other elements with Z > 8 were not detected. Iron and manganese are considered as Fe2+ and Mn2+ based on structural data and by analogy with laachite, respectively. The empirical formulae based on 14 O pfu are: (Ce0.59La0.17Nd0.11Pr0.05)Σ0.92Ca0.82Th0.07Mn0.50Fe0.90Al0.05Zr1.86Ti1.88Nb1.07O14 (holotype), and (Ce0.57La0.19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14 (cotype). The strongest lines of the powder X-ray diffraction pattern [d Å (I%; hkl)] are: 2.963 (91; 202), 2.903 (100; 042), 2.540 (39; 004), 1.823 (15; 400), 1.796 (51; 244), 1.543 (20; 442), 1.519 (16; 282). The unit-cell parameters refined from the powder data are a = 7.296(1), b = 14.147(2), c = 10.161(1) Å, V = 1048.9 Å3. The single-crystal X-ray data obtained from the crystal 0.01 × 0.01 × 0.10 mm shows nöggerathite-(Ce) is orthorhombic, space group Cmca, a = 7.2985(3), b = 14.1454(4), c = 10.1607(4) Å, V = 1048.99 Å3, Z = 4. The crystal structure was solved by direct methods and refined to R = 0.0198 for 574 unique I>2σ(I) reflections. The structure shows an alternation of two types of bent polyhedral layers: an octahedral layer and a layer of cations with 7- and 8-fold coordination. The octahedral layer is built by vertex-sharing M(3)O6 and M(4)O6 octahedra forming three- and six-membered rings, whereas M(5) and M(6) sites are located in the centers of six-membered rings. The adjacent sites M(5) and M(6), with coordination numbers 4 and 5, respectively, are statistically occupied by Fe2+ as the major cation. The M(1) site is a distorted cube which shares edges with neighboring M(1) cubes to form rows along the a axis. Similar rows are formed by sevenfold M(2) mono-capped octahedra. Adjacent rows of eightfold and sevenfold polyhedra are linked with each other via common edges forming a dense layer. The crystal-chemical formula of nöggerathite-(Ce) is: M(1)VIII(LREE0.88Ca0.80Mn0.24Th0.08)M(2)VII(Zr1.88Mn0.12)M(3)VI(Nb1.22Ti0.78)M(4)VI(Ti1.48Nb0.48Al0.04)M(5)IV(Fe0.48Mn0.08)M(6)V(Fe0.40Mn0.04)2O14. Nöggerathite-(Ce) is an analogue of zirconolite-3O, CaZrTi2O7, with Nb dominant over Ti in one of two octahedral sites and REE dominant over Ca in the eightfold-coordinated site. The name honors Johann Jacob Nöggerath (1788–1877), German mineralogist and geologist, a professor of mineralogy and geology at the University of Bonn. Among his publications is a geological description of the Laacher See paleovolcanic region. The type material is deposited in the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia. D.B.T.A. Olds, J. Plášil, A.R. Kampf, F. Dal Bo, and P.C. Burns (2018) Paddlewheelite, a new uranyl carbonate from the Jáchymov District, Bohemia, Czech Republic. Minerals, 8(11), 511.T.A. Olds, J. Plášil, A.R. Kampf, F. Dal Bo, and P.C. Burns (2018) Paddlewheelite, a new uranyl carbonate from the Jáchymov District, Bohemia, Czech Republic. Minerals, 8(11), 511.Paddlewheelite (IMA 2017-098), MgCa5Cu2[(UO2)(CO3)3]4·33H2O, monoclinic, is a new uranyl carbonate mineral discovered at the bifurcation of the Prokop vein on the 5th level of the Svornost abandoned underground mine, Jáchymov District, Bohemia, Czech Republic. The mine is one of the major ore clusters in the area representing classical hydrothermal Ag-Co-Ni-Bi-As±U (five-element vein type) ore deposits. The new mineral is one of the products of post-mining oxidation. Its crystallization requires concomitant dissolution of uraninite, calcite, dolomite, chalcopyrite, and andersonite. Paddlewheelite occurs with calcite, dolomite, and chalcopyrite in the area of Prokop vein rich in andersonite. Other closely associated minerals include coffinitized uraninite, quartz, hematite, and goethite (var. “sammetblende”). The mineral forms cleavage coating and wedged tabular crystals flattened by {100} up to ~400 µm with not apparent twinning. The crystals are blue green, transparent with sub-adamantine luster and very pale blue green streak. Paddlewheelite does not fluoresce in UV light. It is brittle with Mohs hardness ~2 and at least one perfect cleavage on {100}. Due to limited availability of crystals the density was not measured; Dcalc = 2.435 g/cm3 (2.497 for an ideal formula). Paddlewheelite are immediately soluble with effervescence in dilute HCl at room temperature. In plane-polarized transmitted light, the mineral is pleochroic with X ≈ Y (blue green) >> Z (pale yellow). It is optically biaxial (+), α = 1.520(2), β = 1.527(2), γ = 1.540(2) (white light), 2V = 72°(1), Z // b, X = a, Y = c. Dispersion of optical axis is weak r < ν. FTIR spectra of paddlewheelite show features at (cm–1; w – weak, s – strong): multicomponent band spanning from ~3500 to ~2800 (3515, 3377, 3200, 3026, 2850) is related to νO–H stretching of H2O; 1632w [ν2(δ)-bending vibration of H2O]; 1591w, 1544w, 1498s, 1459w, 1410s, 1379w, 1351s, 1289w [splitted ν3 (CO3)2– antisymmetric stretching]; 1115w [ν1 (CO3)2– symmetric stretching]; 931.5vs [ν3(UO2)2+ antisymmetric stretching and probably obscured ν2(δ) (CO3)2–]; 771w [coincidence of either ν1 (UO2)2+ or ν4 (δ) (CO3)2– in-plane bending vibration]. The average of six electron probe WDS analysis [wt% (range)/wt% normalized to 100% total)] is: CaO 12.47 (11.71–13.38)/10.74, CuO 2.65 (1.64–3.26)/2.28, FeO 0.01 (0–0.04)/0.01, MgO 1.7 (1.16–1.93)/1.47, SiO2 0.42 (0–0.93)/0.36, UO3 49.38 (48.22–50.69)/42.97, CO2 (based on structure) 22.8/19.84, H2O (based on structure) 25.66/22.33; total 115.09/100.00. Crystals were heavily dehydrated and fractured in the vacuum, leading to high U totals. Strong depleting of Cu during the analysis was due to high beam current used (15 kV, 30 nA, 5 µm beam diameter). No other elements with Z > 8 were detected. The presence of H2O and CO32− confirmed by FTIR. The empirical formula based on 77 O, 4 U, and 12 CO3 pfu is Mg0.98Ca5.16Cu0.77Si0.16(UO2)4(CO3)12(H2O)33. Attempt to use LA-ICP-MS was not successful giving the average empirical cation formula Mg0.40Ca3.20Cu1.26U4.00. The strongest lines in the powder X-ray diffraction pattern are [d Å (I%; hkl)]: 11.12 (100; 111), 9.69 (22; 002), 8.63 (18; 020), 7.33 (46; 202), 6.42 (30; 022, 221), 5, 54 (37; 222), 4.823 (33; 004, 402), 4.642 (38; 313), 4.215 (34; 024), 3.717 (33; 115, 333). Unit-cell parameters refined from the powder data with whole pattern fitting are a = 22.061(4), b = 17.128(3), c = 19.368(3) Å, β = 90.476°(2), V = 7318 Å3. The single-crystal X-ray data obtained on a crystal 5 × 40 × 50 µm show paddlewheelite is monoclinic, space group Pc, a = 22.052(4), b = 17.118(3), c = 19.354(3) Å, β = 90.474°(2), V = 7306 Å3, Z = 4. The crystal structure was refined to R1 = 0.0706 for 17 626 I>2σ(I) reflections. The paddlewheelite crystal structure contains several first known instances for uranyl minerals, including isolated square pyramidal CuO5 polyhedra “axles” and cubic CaO8 “gearboxes”. These two unique polyhedra bind to hexagonal bipyramidal uranyl tricarbonate (UO2)(CO3)34− units (UTC), forming clusters resembling the paddlewheel of a steamboat which is reflected in the mineral name. Four UTC “paddles” bind to the bases of two Cu square pyramids by sharing corners with carbonate triangles, forming the “axle” of each “paddlewheel” centered by the cubic calcium “gearbox” which shares two O atoms from edges of each of four UTC units forming a “paddlewheel” quadruplet cluster. The apical O atom of each CuO5 square pyramid shares the corner with CO3 group of adjacent UTC paddle. Two UTC “paddles” from each “wheel” form the planarity of the sheet, and 7-coordinated polyhedra of Ca sites connect “paddlewheels” together into an open-topology type sheet. Octahedrally coordinated Mg cations are within pores between “paddlewheels” in the sheet above, such that one Mg cation coordinates to one paddlewheel unit. Two unique sheets of “paddlewheels” at x = ½ and x = 0 are nearly identical except slight difference in rotation of the “paddlewheels”. There is no direct contact between “paddlewheels” of different sheets, which are connected only by hydrogen bonds. Interstitial space between sheets is filled by 11 disordered H2O groups and 22 H2O groups bound to Ca and Mg cations. Each Ca site has a variable number (3 to 6) of coordinating H2O groups, while each Mg binds to 5 H2O groups. Thus, an idealized formula of paddlewheelite can be written as Mg(H2O)5Ca5(H2O)17Cu2[(UO2)(CO3)3]4·11H2O. The structure has some similarities to other uranyl carbonate minerals with paddle-like motifs: braunerite, línekite, albrechtschraufite, and andersonite. Paddlewheelite is the second-most structurally complex uranyl carbonate mineral known after ewingite Mg8Ca8(UO2)24(CO3)30O4(OH)12(H2O)138 and it is chemically related to the insufficiently described mineral voglite Ca2Cu(UO2)(CO3)4·6H2O with unknown crystal structure. The holotype specimen is deposited in the Natural History Museum of Los Angeles County, U.S.A. D.B.A. Pieczka, C. Biagioni, B. Gołębiowska, P. Jeleń, M. Pasero, and M. Sitarz (2018) Parafiniukite, Ca2Mn3(PO4)3Cl, a new member of the apatite supergroup from the Szklary Pegmatite, Lower Silesia, Poland: description and crystal structure. Minerals, 8(11), 485.A. Pieczka, C. Biagioni, B. Gołębiowska, P. Jeleń, M. Pasero, and M. Sitarz (2018) Parafiniukite, Ca2Mn3(PO4)3Cl, a new member of the apatite supergroup from the Szklary Pegmatite, Lower Silesia, Poland: description and crystal structure. Minerals, 8(11), 485.Parafiniukite (IMA 2018-047), ideally Ca2Mn3(PO4)3Cl, monoclinic, is a new mineral of the apatite supergroup (Pasero et al. 2012) from the Szklary LCT pegmatite (50°39.068′ N, 16°49.932′ E), ~6 km N of the Ząbkowice Śląskie town, ~60 km south of Wrocław, Lower Silesia, Poland. The Szklary pegmatite is formed by NNE-SSW elongated lens or a boudin ~4 × 1 m large in planar section, which was in primary intrusive contact with an altered aplitic gneiss, up to 2 m thick, and both rocks were surrounded by tectonized serpentinite. The pegmatite represents the beryl–columbite–phosphate subtype of the rare element (REL)–Li pegmatite class sensu Černý and Ercit (2005). Parafiniukite is found disseminated in the intermediate and central zone of the pegmatite, closely associated with small aggregates of beusite, up to ~1 cm in size, which underwent intense alteration into a secondary assemblage of Mn-oxides and smectites, where pieczkaite and rarer parafiniukite usually survived only as small relicts, not exceeding 250 µm in size. The mineral is transparent with dark olive-green color sometimes masked by the Mn-oxides. It has a vitreous luster, and it is brittle with irregular, uneven fracture. No forms and twinning were observed. Due to the occurring nature of the mineral, streak, hardness, density as well as main optical properties were not determined; Dcalc = 3.614 g/cm3; ncalc = 1.731. Mohs hardness is estimated as 4–5 (by analogy with pieczkaite). Raman spectra show bands (cm–1) at (s = strong; m = medium; w = weak): ~955s, 1019m, and 1105w [stretching vibrations of the (PO4)3– groups]; ~615w, 593m, 575m, and 425m [bending vibrations of (PO4)3– groups]; weaker peaks below ~300 (deformations of the Ca and Mn polyhedra); ~3485 (O–H stretching). The average of 10 electron probe WDS analyses [wt% (range)] is: P2O5 39.20 (38.98–39.44), MgO 0.19 (0.12–0.27), CaO 24.14 (23.66–24.64), MnO 31.19 (30.04–31.78), FeO 2.95 (2.72–3.15), Na2O 0.05 (0.01–0.07), F 0.39 (0.29–0.46), Cl 3.13 (3.00–3.29), H2O [calculated according to stoichiometry, to have 1 (OH+F+Cl) pfu] 0.68 (0.61–0.71), –O=(F2+Cl2) 0.87, total 101.05. The empirical formula is (Mn2.39Ca2.34Fe0.22Mg0.03Na0.01)Σ4.99P3.00O12[Cl0.48(OH)0.41F0.11] based on 12 O and 1 (F,Cl,OH) pfu. The strongest lines in the calculated powder X-ray diffraction pattern are [dcalc Å (Icalc%; hkl)]: 3.239 (39; 002), 2.801 (55, 211), 2.801 (76; 121), 2.740 (100; 300), 2.675 (50; 112), 2.544 (69; 202), 1.914 (31; 222), and 1.864 (22; 132). The cell parameters obtained from single-crystal diffraction data collected on a 0.07 × 0.04 × 0.03 mm crystal are a = 9.4900(6), c = 6.4777(5) Å, V =505.22(5) Å3, hexagonal, P63/m, Z = 2. The crystal structure was refined to R = 4.63% on 320 reflections with Fo > 4σ(Fo) and Rall = 6.76% on 422 reflections. It is topologically similar to those of the other members of the apatite supergroup. The M(1) and M(2) sites are Ca- and Mn-dominant, respectively, whereas Cl is the dominant X anion. The M(2) site has a sevenfold coordination and a mixed (Mn,Ca) occupancy (idealized as Mn0.63Ca0.37). The preferential ordering of Mn at the M(2) site is favored by the occurrence of Cl anion at the X site, whereas Mn tends to be ordered at M(1) when X = F. Parafiniukite corresponds to the end-member composition Ca2Mn3(PO4)3Cl hypothesized by Tait et al. (2015), and following Pasero et al. (2010) is a new member of the Hedyphane Group in the Apatite Supergroup. The name of the mineral is after Jan Parafiniuk (b. 1954), professor of mineralogy at the Institute of Geochemistry, Mineralogy and Petrology of the University of Warsaw, Poland. The parafiniukite holotype is deposited in the Mineralogical Museum of the University of Wrocław, Institute of Geological Sciences, Poland. F.C.R. Juroszek, H. Krüger, I. Galuskina, B. Krüger, L. Jeżak, B. Ternes, J. Wojdyla, T. Krzykawski, L. Pautov, and E. Galuskin (2018) Sharyginite, Ca3TiFe2O8, a new mineral from the Bellerberg Volcano, Germany. Minerals 8(7), 308.R. Juroszek, H. Krüger, I. Galuskina, B. Krüger, L. Jeżak, B. Ternes, J. Wojdyla, T. Krzykawski, L. Pautov, and E. Galuskin (2018) Sharyginite, Ca3TiFe2O8, a new mineral from the Bellerberg Volcano, Germany. Minerals 8(7), 308.Sharyginite (IMA 2017-014), ideally Ca3TiFe2O8, orthorhombic, a new member of the anion deficient perovskite group, was discovered in thermally metamorphosed limestone xenoliths in alkali basalt of the Bellerberg volcano lava field Caspar quarry, Eifel, Rhineland-Palatinate, Germany (50°21′6″ N, 7°14′2″E). This phase was previously documented as a member of the pseudobinary perovskite-brownmillerite series in ye'elimite-larnite pyrometamorphic rocks of the Hatrurim Complex (Sharygin et al. 2008) and in high-temperature skarns in carbonate xenoliths within ignimbrite of the Upper Chegem volcanic structure of the North Caucasus, Kabardino-Balkaria, Russia (Galuskin et al. 2008). It also was recognized in Ca-rich xenoliths in Klöch Basalt quarry, Bad Radkersburg, Styria, Austria (Niedermayr et al. 2011) and in metacarbonate rocks from burned dumps of the Donetsk (Sharygin et al. 2011) and Chelyabinsk coal basins (Sharygin 2012). It was previously identified in xenoliths from the Eifel region (Sharygin and Wirth 2012), but, due to the small size of the crystals was not studied completely. In the holotype specimen, sharyginite is widespread in the contact zone of Ca-rich xenolith with alkali basalt where it is closely associated with fluorellestadite, cuspidine, brownmillerite, rondorfite, larnite, and chlormayenite-wadalite. Rankinite, magnesioferrite, perovskite, and fluorite are less common in this zone. Sharyginite suggested to be formed after perovskite at high-temperature conditions >1000 °C. It occurs as flattened by {010} crystals up to 200 µm. Other forms are {100}, {001} and, rarely rhombic pyramid. The mineral is dark brown, opaque with a brown streak, sub-metallic luster, good cleavage on {010} and imperfect on {001} and {100}. It is brittle with uneven fracture and no parting. The micro indentation hardness VHN25 = 635 (621–649) kg/mm2 corresponding to ~ 5½–6 of Mohs scale. Density was not measured due to abundant inclusions; Dcalc = 3.943 g/cm3. In reflected light, sharyginite is light gray with rare yellowish-brown internal reflections. It is weakly pleochroic from gray to very light gray and weakly anisotropic. The reflectance values in air [Rmax/Rmin, nm] with COM wavelength bolded are: 18.7/17.6, 400; 18.3/17.4, 420; 17.0/16.0, 440; 16.4/15.6, 460; 16.1/15.5, 470; 15.9/15.4, 480; 15.5/14.9, 500; 15.2/14.5, 520; 15.0/14.3, 540; 14.9/14.2, 546; 14.8/14.2, 560; 14.7/14.1, 580; 14.6/14.1, 589; 14.6/14.1, 600; 14.6/14.0, 620; 14.6/14.0, 640; 14.5/13.9, 650; 14.4/13.7, 660; 14.3/13.5, 680; 14.1/13.4, 700. The bands of the Raman spectrum (cm–1): 114, 145, 190, 248, 307, 389, 486, 560, 710, 752, 785 and 1415, 1475 (overtone); 710s [symmetric stretching of ν1(Fe3+O4) tetrahedra] with two shoulders at 752 [ν1(AlO4)] and 785 [ν3(Fe3+O4)]; 486 and 560 [(Fe3+O4) bending]. Bands below 400 cm–1 are attributed to the polyhedral CaO8 and octahedral (Fe3+,Ti)O6 vibrations. No bands in the OH region were observed. The spectrum is similar to that of shulamitite Ca3TiFeAlO8, with the main distinction in the position of the main band. The averages of 9/ 19/ 4 electron probe WDS analysis of sharyginite from Belleberg (holotype)/ Jabel Harmun (Hatrurim complex) Palestinian Autonomy/ Upper Chegem Caldera, North Caucasus, Russia, are [wt% (range): MnO2 2.27 (1.04–3.22)/ n.d./ n.d.; SiO2 0.58 (0.40–0.80)/ 1.19 (1.07–1.43)/ 0.17 (0.07 –0.32); SnO2 n.d./ n.d./ 0.37 (0.15–0.61); TiO2 17.04 (16.29–19.34)/ 17.97 (16.65–18.76)/ 17.38 (16.97–17.76); ZrO2 0.27 (0.07–0.57)/ 0.43 (0.25–0.62)/ 0.39 (0.16–0.67); Al2O3 2.49 (2.22–3.89)/ 3.83 (3.62–4.13)/ 1.86 (1.36–2.29); Cr2O3 0.20 (0.07–0.42)/ 0.25 (0–0.47)/ n.d.; Fe2O3 34.87 (32.81–35.85)/ 32.80 (31.70–34.54)/ 37.43 (36.40–38.72); CaO 41.59 (40.99–42.09)/ 42.19 (41.64–42.60)/ 40.71 (40.53–40.85); MgO 0.13 (0.08–0.24)/ 0.08 (0.06–0.11)/ 0.05 (0.04–0.06); MnO n.d./ n.d./ 0.09 (0.01–0.13); SrO n.d./ 0.18 (0.08–0.32)/ n.d.; total 99.44/ 98.91/ 98.45. No other elements with Z > 8 were detected. The empirical formula of holotype calculated based on 8 O pfu is Ca3.00(Fe1.003+Ti0.864+Mn0.114+Zr0.01Cr0.013+Mg0.01)Σ2.00(Fe0.763+Al0.20Si0.04)Σ1.00O8⁠. The holotype sharyginite is represented by a complex solid-solution, with the end members: 64% of sharyginite, 20% of shulamitite, and 11% of Mn-analogue of sharyginite. Other components like Ca3(Zr4+Fe3+)Fe3+O8, Ca3(Fe3+Fe3+)SiO8, Ca3(Cr3+Fe3+) SiO8, and Ca3(MgTi)SiO8, are minor with contents less than 1–2%. The strongest lines in the X-ray powder diffraction pattern [d Å (I%; hkl)] are: 2.763 (32; 002), 2.712 (27; 200), 2.679 (100; 131), 1.936 (36; 202), 1.857 (19; 060), 1.580 (18; 133), 1.559 (12; 331); 1.341 (11; 262). Unit-cell parameters refined from the powder data are a = 5.4262(4), b = 11.1468(7), c = 5.5308(3) Å, V = 334.5(3) Å3. The single-crystal X-ray data obtained from the crystal 60 × 40 × 40 µm shows sharyginite is orthorhombic, space group P21ma, a = 5.423(2) Å, b = 11.150(8) Å, c = 5.528(2) Å, V = 334.3 Å3, Z = 2. The crystal structure refined to R = 0.024 for all 951 unique reflections. It is closely related to that of shulamitite (the details are discussed) and consists of double layers of corner-sharing (Ti,Fe3+)O6 octahedra, which are separated by single layers of (Fe3+O4) tetrahedra which form zweier single-chains. These chains are characteristic for sharyginite, shulamitite and the structurally related brownmillerite. One octahedral site hosted by ½ Ti and ½ Fe3+ with minor Al. The tetrahedral site occupied by ¾ Fe3+ and ¼ Al. The independent calcium cations located between the two octahedral layers (Ca2) and between octahedral and tetrahedral layers (Ca1). The name honors Victor Victorovich Sharygin (b.1964) of the Sobolev Institute of Geology and Mineralogy, Novosibirsk, Russia, for his contributions to petrology of alkaline and pyrometamorphic rocks. He also found and published preliminary data on this mineral. Type material was deposited in the Fersman Mineralogical Museum RAS, Moscow, Russia. D.B.A. Vymazalová, F. Laufek, S.F. Sluzhenikin, V.V. Kozlov, C.J. Stanley, J. Plášil, F. Zaccarini, G. Garuti, and R. Bakker (2018) Thalhammerite, Pd9Ag2Bi2S4, a new mineral from the Talnakh and Oktyabrsk Deposits, Noril'sk Region, Russia. Minerals, 8(8), 339.A. Vymazalová, F. Laufek, S.F. Sluzhenikin, V.V. Kozlov, C.J. Stanley, J. Plášil, F. Zaccarini, G. Garuti, and R. Bakker (2018) Thalhammerite, Pd9Ag2Bi2S4, a new mineral from the Talnakh and Oktyabrsk Deposits, Noril'sk Region, Russia. Minerals, 8(8), 339.Thalhammerite (IMA 2017-111), Pd9Ag2Bi2S4, tetragonal, is a new mineral discovered in the same specimen (polished section) which is also holotype for kravtsovite, PdAg2S, and vymazalováite, Pd3Bi2S2. The specimen originated from vein-disseminated galena-pyrite-chalcopyrite ore hosted by diopside-hydrogrossular metasomatites developed in diopside-monticellite skarns below the lower exocontact of the Talnakh intrusion at the eastern part of Komsomolsky mine (69°30′20″ N; 88°27′17″ E). Here thalhammerite is also associated with cooperite, braggite, vysotskite, stibiopalladinite, telargpalite, sobolevskite, kotulskite, sopcheite, insizwaite, Au-Ag alloys, and Ag-bearing sulphides, selenides, sulphoselenides, and tellurosulphoselenides. The mineral was also observed in vein-disseminated millerite-bornite-chalcopyrite ore (Talnakh and Oktyabrsk deposits) hosted by pyroxene-hornfels at the lower exocontact of the Kharaelakh intrusion at western part of the Komsomolsky mine, Noril'sk region, Russia. In the latter association it found with kotulskite, telargpalite, laflammeite, and Au-Ag alloys. Thalhammerite was also observed in intergrowths with sobolevskite, in PGE ores from the Fedorov-Pana Layered Intrusive, Russia. Thalhammerite forms tiny inclusions (a few micrometers to ~40–50 µm) intergrown in galena, chalcopyrite, and bornite. It is opaque with a metallic luster and is brittle; Dcalc = 9.72 g/cm3. In plane-polarized light, thalhammerite is light yellow with weak bireflectance, weak pleochroism, in shades of slightly yellowish brown, weak anisotropy and with no internal reflections. The reflectance values in air [R1/R2 %, nm], COM wavelengths are bolded are: 41.9/43.0, 400; 40.6/41.8, 420; 41.1/42.3, 440; 41.7/42.8, 460; 41.9/43.0, 470; 42.2/43.3, 480; 42.7/43.9, 500; 43.2/44.4, 520; 43.7/44.9, 540; 43.9/45.1, 546; 44.2/45.4, 560; 44.7/45.9, 580; 44.9/46.1, 589; 45.2/46.3, 600; 45.6/46.8, 620; 46.1/47.3, 640; 46.3/47.5, 650; 46.5/47.8, 660; 47.0/48.3, 680; 47.4/48.9, 700. The reflectance values for synthetic analog are similar being slightly higher for each wavelength for 0.6–1.8%. The Raman spectra of thalhammerite and synthetic Pd9Ag2Bi2S4 are practically identical and show four main absorption bands at 122, 309, 362, and 483 cm−1. The averaged electron probe WDS analysis 3 spots for holotype/ 5 spots for synthetic thalhammerite (wt%): Pd 52.61/ 55.10, Bi 22.21/ 24.99, Pb 3.92/ –, Ag 14.37/ 12.75, S 7.69/ 7.46, Se 0.10/ –; total 100.90/ 100.30. The empirical formulae based on 17 apfu are Pd8.46Ag2.28(Bi1.82Pb0.32)Σ2.14(S4.10Se0.02)Σ4.12/ Pd8.91Ag2.03Bi2.06S4.00. Due to the small size of thalhammerite grains the X-ray data were obtained only for its synthetic analogue. The structural identity between the synthetic Pd9Ag2Bi2S4 and the natural material was confirmed by EBSD, Raman spectroscopy and optical properties. The strongest lines in the X-ray powder diffraction pattern [d Å (I%; hkl)] are: 3.343 (24; 211), 2.839 (46; 220), 2.569 (21; 301), 2.412 (100; 222), 2.325 (61; 123), 2.287 (48; 004), 2.220 (29; 132), 2.007 (40; 400), 1.748 (23; 332), 1.509 (30; 404). The single-crystal X-ray data shows the synthetic thalhammerite is tetragonal, space group I4/mmm, a = 8.0266(2), c = 9.1531(2) Å, V = 589.70 Å3, Z = 2. The crystal structure refined to R = 0.0310 for 221 unique observed [I>3(σ)] reflections is considered as only a substructure. The Rietveld refinement shows a few very weak unindexed peaks and peak splitting, which cannot be fitted using the tetragonal model. Attempts to refine the structure from single-crystal data in orthorhombic subgroups of I4/mmm (i.e., Fmmm, Immm) led to negligible lowering of R-factors (0.0293) with a rapid increase of the refined parameters. No low-symmetry models could describe all peak splitting in powder diffraction patterns of synthetic thalhammerite. The tetragonal substructure contains three Pd, one Ag, Bi, and S sites. All sites, except the Pd(2) (0.88 occupancy), were found to be fully occupied. The Pd(1) position has perfectly planar square coordination of S atoms and further completed by two Ag atoms perpendicular to [Pd(1)S4] square. The Pd(2) and Pd(3) sites form complex polyhedron being coordinated by two S atoms, two Bi, two Ag, and other Pd atoms. Ag site is surrounded by nine Pd atoms forming a mono-capped tetragonal antiprismatic coordination. The Bi atom is coordinated by eight Pd atoms to form a bi-capped trigonal prism. Thalhammerite has no exact structural analogues. The mineral honors Associate Professor Oskar Thalhammer (b.1956) of the University of Leoben, Austria for his contributions to the ore mineralogy and mineral deposits of PGE. The holotype is deposited at the Department of Earth Sciences of the Natural History Museum, London, U.K. D.B.I.V. Pekov, F.D. Sandalov, N.N. Koshlyakova, M.F. Vigasina, Y.S. Pole-khovsky, S.N. Britvin, E.G. Sidorov, and A.G. Turchkova (2018) Copper in natural oxide spinels: the new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals, 8(11), 498.I.V. Pekov, F.D. Sandalov, N.N. Koshlyakova, M.F. Vigasina, Y.S. Pole-khovsky, S.N. Britvin, E.G. Sidorov, and A.G. Turchkova (2018) Copper in natural oxide spinels: the new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals, 8(11), 498.Thermaerogenite (IMA 2018-021), ideally CuAl2O4, cubic, is a new member of the spinel supergroup (Bosi et al. 2019). It was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (55°41′ N 160°14′ E, 1200 m.a.s.l.), one of the hottest fumaroles at the Second scoria cone with a temperature measured in 2012–2018 which varied from 360 to 490 °C, depending on the depth. Thermaerogenite is found with other spinel supergroup members (spinel, gahnite, magnesioferrite, franklinite, and cuprospinel) and with tenorite, hematite, orthoclase (As-bearing variety), fluorophlogopite, langbeinite, calciolangbeinite, aphthitalite-type sulfates, anhydrite, krasheninnikovite, vanthoffite, fluoborite, sylvite, halite, pseudobrookite, rutile, corundum, and various arsenates (urusovite, johillerite, ericlaxmanite, kozyrevskite, popovite, lammerite, lammerite, tilasite, svabite, nickenichite, bradaczekite, dmisokolovite, shchurovskyite, etc.). Cu-bearing spinels are among the latest minerals of this assemblage: they occur in cavities and overgrow earlier oxides (hematite, tenorite) as well as silicates, arsenates and “saline” sulfates. Thermaerogenite is semitransparent to transparent, with a yellowish streak and strong vitreous luster. Thermaerogenite forms brown, yellow-brown, red-brown, brown-yellow, or brown red octahedral crystals up to 0.02 mm across, sometimes skeletal, typically combined in open-work clusters up to 1 mm across. Areas “sprinkled” by crystals of the new mineral are up to 0.5 cm × 0.5 cm. Major form are {111}, with narrow {110} faces observed on some crystals. Thermaerogenite is brittle, with conchoidal fracture (observed under the scanning electron microscope); cleavage or parting is not observed. Mohs hardness is ca. 7. Dcalc = 4.870 g/cm3. In reflected light, thermaerogenite is gray, optically isotropic, with yellowish internal reflections. The reflectance values in air [R % (nm)] (COM wavelengths bolded) are: 16.4 (400), 16.0 (420), 15.7 (440), 15.4 (460), 15.2 (470), 15.1 (480), 14.8 (500), 14.5 (520), 14.2 (540), 14.2 (546), 14.0 (560), 13.7 (580), 13.6 (589), 13.4 (600), 13.2 (620), 13.0 (640), 12.9 (650), 12.8 (660), 12.5 (680), 12.3 (700). The Raman spectrum of thermaerogenite contains four distinct bands (cm–1, s = strong): 762s (A1g mode, stretching vibrations of O-Al in tetrahedral coordination), 590 [F2g(2) or F2g(3) mode involving divalent cations, (Cu,Zn)–O], 284 [F2g(1) mode], and 125s (lattice modes). The average of 4 WDS electron probe analyses [wt%, (range)] is: CuO 25.01 (23.64–26.86), ZnO 17.45 (14.46–18.71), Al2O3 39.43 (34.59–45.43), Cr2O3 0.27 (0.17–0.33), Fe2O3 17.96 (11.47–22.21), total 100.12. The empirical formula based on 4 O pfu is (Cu0.62Zn0.42)Σ1.04(Al1.52Fe0.443+Cr0.01)Σ1.97O4⁠. The strongest X-ray powder diffraction lines are [d Å (I%; hkl)]: 2.873 (65; 220), 2.451 (100; 311), 2.033 (10; 400), 1.660 (16; 422), 1.565 (28; 511), and 1.438 (30; 440). Unit-cell parameters refined from the powder data are a = 8.131(1) Å, V = 537.6 Å3, Z = 8. The parameters of the cubic unit cell of thermaerogenite refined from a single-crystal are a = 8.093(9) Å, V = 530.1 Å3, and space group Fd3m; the crystal structure of the new mineral was not studied due to the low quality of single-crystal diffraction patterns caused by the imperfectness of all tested crystals. Thermaerogenite forms a continuous isomorphous series with gahnite and at Arsenatnaya fumarole at Tolbachik is associated to Cu-richest natural spinel-type oxide so far described with composition (Cu0.83Zn0.10Mg0.04Ni0.02)Σ1.00(Fe1.733+Al0.22Mn0.053+Ti0.01)Σ2.01O4⁠. The mineral name thermaerogenite is constructed based on the combination of Greek words θερµός, “hot”, αέριον, “gas”, γενής that means “born by”. Thus, in whole it means born by hot gas, that reflects the fumarolic origin of the mineral. The type specimen of thermaerogenite is deposited in the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia. F.C.C. Biagioni, M. Pasero, and F. Zaccarini (2018) Tiberiobardiite, Cu9Al(SiO3 OH)2(OH)12(H2O)6(SO4)1.5·10H2O, a new mineral related to chalcophyllite from the Cretaio Cu prospect, Massa Marittima, Grosseto (Tuscany, Italy): occurrence and crystal structure. Minerals, 8(4), 152.C. Biagioni, M. Pasero, and F. Zaccarini (2018) Tiberiobardiite, Cu9Al(SiO3 OH)2(OH)12(H2O)6(SO4)1.5·10H2O, a new mineral related to chalcophyllite from the Cretaio Cu prospect, Massa Marittima, Grosseto (Tuscany, Italy): occurrence and crystal structure. Minerals, 8(4), 152.Tiberiobardiite (IMA 2016-96), ideally Cu9Al(SiO3OH)2(OH)12(H2O)6 (SO4)1.5·10H2O, trigonal, is a new mineral discovered in the Cretaio Cu prospect, Massa Marittima, Grosseto, Tuscany, Italy. The ore deposit is a small concentration of Cu sulfides (bornite, chalcocite, and covellite) and hematite, scattered as stockwork veins within highly deformed gabbro. Primary sulfides are strongly altered into antlerite, brochantite, chalcanthite, chalcoalumite, connellite, langite, libethenite, malachite, posnjakite, serpierite/devilline, and spangolite. Tiberiobardiite is found associated with brochantite as supergene alteration of Cu ore minerals in an oxidizing and hydrous low-T environment. Tiberiobardiite occurs as thin, tabular {001} crystals up to 200 × 5 µm, with a pseudo-hexagonal outline. The mineral is green, with a pale green streak; it is transparent with vitreous luster. Tiberiobardiite is brittle, with a perfect {001} cleavage and irregular fracture. Hardness and density and optical properties were not measured; Dcalc = 2.528 g/cm3; ncalc = 1.568. Raman spectrum show peaks evident in the 300–1200 range (cm–1): at 124, 203, and 261 (possibly lattice modes); at 394, 440, 487, 544, and 589 {bending modes of the [SiO3(OH)] and (SO4) groups}; at 965 ([SiO3(OH)] and (SO4) groups) and 1097 weak [likely (SO4) antisymmetric stretching]; a strong and broad band was observed that can be deconvoluted into 3218, 3418, and 3555 bands (O–H stretching vibrations). The average of 5 WDS electron probe analyses [wt%, (range)] is: SO3 10.37 (9.67–10.94), P2O5 3.41 (3.02–3.80), As2O5 0.05 (0.00–0.17), SiO2 8.13 (7.29–9.03), Al2O3 5.54 (4.93–6.47), Fe2O3 0.74 (0.61–0.83), CuO 62.05 (57.44–65.20), ZnO 0.03 (0–0.10), total 90.32. The empirical formula based on 42 O pfu is (Cu8.692+Al0.21Fe0.103+)Σ9.00Al1.00(Si1.51P0.54)Σ2.05S1.44O12.53(OH)13.47⋅16H2O⁠. The strongest X-ray Gandolfi camera diffraction lines are [d Å (relative visual intensity; s = strong; m = medium; mw = medium-weak; w = weak; vw = very weak; hkl)]: 9.4 (s; 003), 4.67 (s; 006, 113, 113), 2.576 (m; 223, 223), 2.330 (m; 226, 226), and 2.041 (mw; 229, 229). The cell parameters obtained from single-crystal diffraction data collected on a 0.180 × 0.050 × 0.005 mm crystal are a = 10.6860(4), c = 28.3239(10) Å, V =2801.0 Å3, trigonal, R3, Z = 3. The crystal structure was refined to R = 6.02% on 1747 reflections with Fo > 4σ(Fo) and Rall = 7.99% on 2809 reflections. The crystal structure of tiberiobardiite is composed by five independent cation positions (Cu1, Cu2, Al, Si, and S) and nine anion sites in the asymmetric unit. It can be described as formed by {001} heteropolyhedral layers, composed by Cuφ6 polyhedra (φ = O, OH, H2O), Al(OH)6 octahedra, and (Si,P)O3(OH,O) tetrahedra, alternating with interlayers hosting (SO4) and H2O groups. The Si-centered tetrahedra (occupied by Si and P) are alternatively disposed above and below the sheet, which has a simplified chemical composition {Cu9Al[(Si0.75P0.25)O3(OH0.75O0.25)]2 (OH)12(H2O)6}3+. The two independent Cu sites (Cu1 and Cu2) display a sixfold coordination, showing the typical distorted (4+2) octahedral coordination related to the Jahn-Teller effect of Cu2+. To gether with chalcophyllite [Cu9Al(AsO4)2(OH)12(H2O)6(SO4)1.5·10H2O] from the chalcophyllite group. These species are related to barrotite, {Cu9Al[SiO3(OH)]2(OH)12(H2O)6}{(SO4)[AsO3(OH)]0.5}·2H2O, but the crystal structure of barrotite being not solved, the actual relationships with the chalcophyllite group minerals are unknown. The mineral is named in honor of the mineral collector Tiberio Bardi (b.1960), for his contribution to the study of Tuscan mineralogy. The holotype specimen is deposited in the Museo di Storia Naturale of the University of Pisa, Calci (Pisa), Italy. F.C.T. Balić-Žunić, A. Garavelli, D. Pinto, and D. Mitolo (2018) Verneite, Na2Ca3Al2F14, a new aluminum fluoride mineral from Icelandic and Vesuvius Fumaroles. Minerals, 8(12), 553.T. Balić-Žunić, A. Garavelli, D. Pinto, and D. Mitolo (2018) Verneite, Na2Ca3Al2F14, a new aluminum fluoride mineral from Icelandic and Vesuvius Fumaroles. Minerals, 8(12), 553.Verneite (IMA 2016-112), ideally Na2Ca3Al2F14, cubic, is a new mineral discovered in fumarolic sublimates collected at Eldfell (in 1988) and Hekla (in 1992) volcanoes in Iceland and in the specimen from Vesuvius volcano, Italy, collected in 1925 and catalogued in the Museum of Earth Sciences at Bari University as “avogadrite or malladrite.” The mineral is also found in fumaroles at Fimmvörduhals, Iceland, after the eruption in 2010. Verneite occurs in medium- to low-temperature fumaroles (170° C at the time of sampling), as white-yellowish to brown crusts and massive aggregates up to several millimeters in size, sometimes also in transparent, colorless to pale yellowish crystals. In Hekla verneite found in mixtures with ralstonite and hematite, jacobssonite, and unidentified “mineral HB.” Other associated minerals are leonardsenite, heklaite, malladrite, opal, and fluorite. In Eldfell verneite forms {110} crystals up to 20 µm associated with jakobssonite, “mineral HB,” anhydrite, leonardsenite, ralstonite, jarosite, and meniaylovite. In the Vesuvius specimen, crystals up to 10 µm formed by combination of {100}, {110}, and {111} are associated with ralstonite, hieratite, knasibfite, matteuccite, avogadrite, and malladrite. No fluorescence in UV light was observed on the investigated samples. No other physical properties were determined due to a small crystal size and admixtures; Dcalc = 2.974 g/cm3 and ncalc = 1.357. The chemical composition was analyzed by SEM-EDS on the grains sputtered on a carbon film. No weight percentage data is presented. The empirical formulae based on 7 cations pfu are given as Na2.01Ca2.82Al2.17F14.02 (Eldfell)/ (Na1.47K0.09)Σ1.56Ca3.25Al2.19F14.33 (Vesuvius). [wt% derived from these formulae are, respectively: Na 9.54/ 6.77, K 0/ 0.71, Ca 23.35/ 26.11, Al 12.09/ 11.84, F 55.02/ 54.57]. The powder XRD data were obtained on a sample from Hekla, containing verneite, ralstonite, hematite, jakobssonite, and a minor amount of the “mineral HB.” The main lines of powder XRD spectra assigned to verneite are [d Å (I%; hkl)]: 7.24 (17; 011), 5.11 (17; 002), 4.18 (76; 211), 3.62 (55; 022), 3.23 (68; 031), 2.95 (100; 222), 2.73 (38; 321), 2.414 (40; 411), 2.288 (40; 402); 2.184 (78; 332), 2.009 (98; 341, 431), 1.871 (75; 251), 1.811 (84; 044), 1.663 (66; 611, 532, 352); 1.582 (28; 451), 1.545 (46; 622), 1.512 (31; 361). The Rietveld refinement confirmed verneite is cubic, space group I213, a = 10.264(1) Å, V = 1081.4 Å3, Z = 4. The crystal structure of its synthetic analogue described (Courbion and Ferrey 1988) as a three-dimensional network of [FCa3Na]6+ tetrahedra, linked by Ca2+ ions with inserted [AlF6]3− octahedra and an independent fluoride F3 ion, linked to three Ca2+ and one Na+ ions. Based on these data another view on the crystal structure, considering cation coordination is presented as a three-dimensional mesh of sinuous chains of CaF8 coordination bis-disphenoids interlaced with similarly sinuous chains of NaF7-caped octahedra forming together the intersecting layers parallel to three equivalent crystallographic planes of {100} with AlF6 octahedra imbedded in its interstitions. The characteristics of Ca coordination in fluorides, as well as their relations to other ternary Na–Ca–Al fluorides are discussed. Verneite is named after Jules Verne (1828–1905), famous French science fiction writer, for the promotion of the science. His novel Voyage au center de la Terre (1864), describes a journey through Earth's underground started through a crater of Iceland volcano Snæfell and finished by ejecting the travelers with the eruption of a volcano Stromboli in South Italy. The holotype and the cotype are kept in the Icelandic Institute of Natural History, Garðabær, Iceland. The Vesuvius sample is in the collection of the Department of Earth and Geo-Environmental Sciences, University of Bari, Italy. D.B.

中文翻译:

新的矿物名称,

该新矿物名称中包含16种新矿物的条目,包括金闪石,金刚砂石,卡美拉兹石,铜铁矿,辉锰矿,钙矾石,飞灰岩horakite,n石-(Ce),桨轮石,副辉石,黄铁矿,菱铁矿,菱铁矿,菱铁矿,菱铁矿,辉闪石。 Galuskin,B.Krüger,IO IO Galuskina,H.Krüger,Y.Vapnik,JA Wojdyla和M.Murashko(2018)一种新的具有模块化结构的矿物,其来源于Hatrurim络合物的亚变质岩中的红铁矿:Ariegilatite,BaCa12(SiO4) 4(PO4)2F2O,来自以色列内盖夫沙漠。矿物,8(3),19.EV Galuskin,B.Krüger,IO Galuskina,H.Krüger,Y.Vapnik,JA Wojdyla和M.Murashko(2018)一种新的矿物,具有模块化结构,其结构来自于亚铁矿石中的亚铁酸盐Hatrurim配合物:Ariegilatite,BaCa12(SiO4)4(PO4)2F2O,来自以色列内盖夫沙漠。矿物,8(3),19.Ariegilatite(IMA 2016-100),理想的是三角形的BaCa12(SiO4)4(PO4)2F2O,是Nabimusaite组的新成员*,在Hatrurim络合物的不同亚长形岩露头中发现位于以色列,巴勒斯坦自治区和约旦地区。在约旦安曼以南80公里处的Daba-Siwaqa地区北部,在闪锌矿卵石中发现了最早的闪锌矿样品(拉长为0.25 mm的方解石晶体,其中有方晶石,尖晶石,萤石,氟磷灰石,钙钛矿)。虽然矿物的描述主要基于在阿拉德(Arad)附近的内盖夫沙漠(Negev Desert)采集的样品,但以色列(N31°13′E35°16′)的辉石岩中也发现了闪锌矿(含萤石,萤石-褐铁矿,褐煤,氟磷灰石,钠钙石和茉莉花)在Ma'ale Adummim,巴勒斯坦自治。闪锌矿通常限于深灰色细晶粒亚铁酸盐岩的重结晶区,其与变色岩,方解石细纹的发展以及大型的亚铁酸盐巨晶(尺寸最大1 cm)的局部出现与周围的岩石不同。以及硫化物矿化的存在。它与亚铁酸盐,方解石,褐铁矿,白云母,含CO3的氟磷灰石,萤石,萤石-方解石,重晶石,锂辉石-角铁石系列的石榴石,未确定的Ca-Fe-和Rb-轴承硫化铁。闪锌矿通常长满了,并被线虫取代。它形成圆盘状晶体的高度扁平的晶体。在薄切片中观察到伪针状形态。一些高度碎裂的闪锌矿晶体高达0。5×0.1毫米 矿物是无色透明的,带有白色条纹和玻璃光泽。对于该组的其他成员,它没有像往常一样在{001}上显示出明显的分裂,骨折是不规则的。它不显示任何荧光。由于小尺寸的密度无法测量;Dcalc = 3.329g / cm 3。矿物是光学单轴(–),ω= 1.650(2),ε= 1.647(2)(λ= 589 nm),非多色的。微压痕硬度VHN50 = 356(331–378)kg / mm2,对应于4–4.5的莫氏硬度。拉曼光谱表现出以下强带(cm-1):129、179、229和309(晶格模式,Ba-O,Ca-O振动);403 [ν2(SiO4)4–]; 427 [ν2(PO4)2–];520 [ν4(SiO4)4–]; 569和591 [ν4(PO4)3-];834和874 [ν1(SiO4)4-];947 [ν1(PO4)3–];993 [ν1SO4)2–]; 1030 [ν3(PO4)3–];1066 [ν1(CO3)2–]。拉曼光谱数据表明在闪锌矿中不存在H 2O。22种WDS电子探针分析的平均值[wt%,(范围)]为:SO3 0.17(0.05-0.31),V2O5 0.1(0-0.17),P2O5 9.83(8.96-10.55),TiO2 0.12(0.05-0.25), SiO2 19.87(19.52–20.42),Al2O3 0.12(0.07–0.18),BaO 12.26(12.14–12.41),FeO 0.32(0.24–0.46),MnO 0.29(0.09–0.39),CaO 53.84(53.19–54.40),MgO 0.14 (0.11-0.22),K2O 0.04(0-0.10),Na2O 0.22(0.16-0.36),F 3.17(2.96-3.34),CO2 0.57(根据电荷平衡计算),-O = F2 1.33,总计99.72。基于13个非四面体阳离子pfu的经验公式为(Ba0.98K0.01Na0.01)Σ1(Ca11.77Na0.08Fe0.062 + Mn0.052 + Mg0.04)Σ12[(Si3.95Al0.03Ti0.02) Σ4O16] [(P1.70C0.16Si0.10S0.036 + V0.01)Σ2O8]F2.04O0.96⁠。计算出的X射线粉末衍射图中最强的线是[dcalcÅ(Icalc%; hkl)]:3.578(51; 210),3.437(45; 1.0.10),3。090(100; 221),2.822(82; 219),2.754(62; 0.0.15),2.743(51; 227),1.983(47; 2.2.16),1.789(92,420)。在0.038×0.032×0.025 mm的晶体上进行单晶X射线研究表明,矿物是三角形的,空间群R3m,a = 7.1551(6),c = 41.303(3)Å,V = 1831.2Å3,Z = 3对于822 I>2σ(I)的唯一反射,铝镁矿的晶体结构被精炼为R1 = 0.0191。它具有模块化的,由红榴石(Ca3SiO5)衍生的插层抗钙钛矿结构,最容易描述为两个模块的1:1堆叠:一个三重抗钙钛矿模块{[F2OCa12](SiO4)4} 4+和{Ba (PO4)2} 4 –沿[001]。在模块{[F2OCa12](SiO4)4} 4+中,位置F1和O7由八面体排列的六个Ca原子配位,形成三(001)层。模件{[F2OCa12](SiO4)4} 4+也可以描述为由三元组Ca3O14形成的圆柱体,彼此相对旋转60°;Ca-三胞胎在结构腔中形成四层(SiO4)4-四面体。模块{Ba(PO4)2} 4–的特征在于(P1O4)四面体连接到六配位的Ba1。这个名字是为了纪念Arie Gilat(生于1939年),他从以色列地质调查局退休,在当地从事地质制图,构造和地球化学研究超过30年。原型被存放在俄罗斯莫斯科的费斯曼矿产博物馆。FCComments:根据CNMNC最近批准的新命名法,IMA钙镁铁矿与纳比蒙铁矿和钠铁锰矿(请参见下面的摘要)都属于弧形超群的弧形群。引用:R. Miyawaki,F。Hatert,M。Pasero和SJ Mills(2020)CNMNC新闻通讯第54号,《矿物学杂志》,84(2),359–365.D。Nishio-Hamane,T.Tanaka和T.Minakawa(2018)Aurihydrargyrumite,来自日本的天然Au6Hg5相。矿物,8(9),415.D. Nishio-Hamane,T.Tanaka和T.Minakawa(2018)Aurihydrargyrumite,来自日本的天然Au6Hg5相。矿物,8(9),415.六方的水银辉石(IMA 2017-003),Au6Hg5,是一种新的矿物,天然的汞合金,在四国岛爱媛县内湖市育木市的织田河中部的砂岩中发现。 , 日本。小田河谷在三叶川变质岩层中发育。在该地区发现了一条小的石英脉,包括含金和汞的矿化。砂矿中的其他矿物包括钛铁矿,磁铁矿,铬铁矿,锆石,白钨矿,金,铱,和铁矾。通过自电精炼可以使含汞砂金风化而形成金刚玉。它以完全或部分银色涂层出现在金颗粒上,厚度最大为2 µm。涂层由{001}和{100}或{110}形成的通常为2微米的通常为反面和有时为反面的六面体六角形晶体组成。矿物具有金属光泽,银白色条纹,莫氏硬度〜2.5以及韧性和韧性。由于晶体尺寸小,无法确定其他性能。Dcalc = 16.86g / cm 3。在以下各点上获得的五个电子探针EDS分析的平均值:金刚砂岩层的自然表面/金颗粒的该层/核心下的“富金”区域[wt%(范围)]为Au 54.92(54.26-55.76)/96.82 (95.47–98.73)/88.20(88.15–88.87),Ag 0.0 / 0.0 / 9.90(9.83–10.04),Hg 47.50(46.54–48)。91)/2.96(1.41–4.60)/1.69(1.28–2.17),总计102.42 / 99.78 / 99.79。较高的总数由不规则的表面形貌解释。基于11 Au + Hg的金刚玉的经验公式为Au5.95Hg5.05。粉末X射线衍射图谱中最强的线[dÅ(I%; hkl)]为:2.877(29; 112),2.597(23; 202),2.434(42; 113),2.337(100; 104) ,2.234(87; 211),1.401(39; 314),1.301(41; 404),1.225(65; 217)。从粉末数据精炼的晶胞参数为a = 6.996(1)Å,c = 10.154(2)Å,V = 430.40Å3,Z =10。Aurihydrargyrumite为六方晶,P63 / mcm。金刚砂石的晶体结构包含一个Au位点和两个Hg位点。每个不同的位点在ab平面中形成一片。金片的原子形成排列成三角形网状的三角形三聚体。Hg原子在Hg1薄片中形成了三角变形的Kagome网,但在Hg2薄片中形成了蜂窝网。两张金片和一张Hg1片形成一个复合Au-Hg1-Au层,下一层将其绕c轴旋转60°。Hg2薄板出现在这些层之间。金银辉石与合成的Au6Hg5相同。另一个六角形天然汞齐威山石(Au,Ag)3Hg2具有与合成相Au3Hg相同的晶胞参数。据报道,第三种天然汞合金Au94-88Hg6-12被称为UM1992-08-E:AuHg(Smith和Nickel,2007年)是单斜晶的(Desborough和Foord,1992年)。矿物名称反映了其成分的拉丁语根:金(金)和水银(汞)。类型标本已存放在日本国家自然科学博物馆的藏品中。DBWL Griffin,SEM增益,L。Bindi,V。Toledo,F.Cámara,M.Saunders和SY O'Reilly(2018)Carmeltazite,ZrAl2Ti4O11,一种新的矿物,被困在以色列北部Mt Carmel火山岩中的刚玉中。矿物,8(12),601.WL Griffin,SEM Gain,L.Bindi,V.Toledo,F.Cámara,M.Saunders,和SY O'Reilly(2018)Carmeltazite,ZrAl2Ti4O11,一种从刚玉中捕获的新矿物以色列北部卡梅尔山的火山岩。矿物,8(12),601.卡美拉兹石(IMA 2018-103),理想的是正交晶系的ZrAl2Ti4O11,是一种新的矿物物种,发现在黑铁质火山碎屑喷出物中发现的骨架刚玉晶体的空隙中或包含在被困熔体的口袋中到超镁铁质的上白垩统火山岩,以及在以色列北部海法附近的基松河卡梅尔山附近的冲积砂中。相关的矿物包括铁黄铁矿,刚玉,钙长石,Ca-Mg-Al-Si-O玻璃基体中的橄榄石,尖晶石,未命名的REE相。以前,通过不溶混的Fe-Ti氧化物熔体和Fe-Ti-Zr硅化物熔体(也发现为卡美石的夹杂物),moissanite和黄褐铁矿的结晶在fO2下析出了属于该组合的玄武质(?)硅酸盐熔体。 =ΔIW-6或更小,随后(随着fO2的降低),方钠石,菱锰矿和未命名的TiB2,TiO和TiN。Carmeltazite承载刚玉聚集体,据认为是在地幔边界(约30 km深度)附近形成的,存在以地幔衍生的CH4 + H2为主的过量挥发物。最近,在同一座以色列火山异形物中发现了第一个天然氢化物,就证明了这一点。尽管在温度和fO2的压力下,卡梅尔山的结晶条件与CAI相似,但卡尔梅拉石矿的组合物与碳质球粒陨石中的钙铝夹杂物(CAI)观察到的相似。1 GPa。Carmeltazite形成黑色金属晶体,最大厚度为80 µm,厚度为几微米,带有红色条纹。在反射光下,卡美拉石为弱多色性,从深棕色到深绿色,从弱到中等双反射体,没有内部反射。它是各向异性的,没有特有的旋转色彩。COM波长的反射率值[Rmin,Rmax(%)λnm]为:21.8,22.9(471.1); 21.0、21.6(548.3),19.9、20.7(586.6);和18.5、19.8(652.3)。由于少量可用材料,无法确定其他物理性能;Dcalc = 4。122克/立方厘米(适用于理想配方)。八个点电子探针WDS分析的平均值[wt%(范围)]为SiO2 1.50(1.24–1.70),ZrO2 24.9(23.7–27.9),HfO2 0.53(0.48–0.67),UO2 0.16(0–0.40),ThO2 0.06(0–0.13),Al2O3 18.8(18.0–20.1),Cr2O3 0.02(0–0.08),Ti2O3 50.6(48.8–52.2),Sc2O3 0.76(0.59–1.24),Y2O3 0.39(0.30–0.51),MgO 1.89( 1.50–2.93),CaO 0.51(0.29–1.45),总计100.12。基于11 O pfu的经验公式为(Ti3.603 + Al1.89Zr1.04Mg0.24Si0.13Sc0.063 + Ca0.05Y0.02Hf0.01)Σ7.04O11⁠。主要的X射线粉末衍射线[dÅ(I /%; hkl)]为:5.78(20; 201),5.04(65; 002,011),4.09(60; 211),2.961(100; 312) ,2.885(40; 411),2.732(30; 303),2.597(20;​​ 221),2.051(25; 404),2.047(60; 422),1.456(30; 026)。从粉末XRD数据中提炼的晶胞参数为a = 14.076(2),b = 5.8124(8),c = 10.0924(9)Å,V = 825.7Å3。在0.060×0.075×0.080 mm的晶体上获得的单晶XRD数据显示,卡美拉石为正交晶,空间群Pnma,a = 14.0951(9),b = 5.8123(4),c = 10.0848(7)Å,V = 826.2 Å3,Z =4。对于1165次观察到的反射,Fo>4σ(Fo),晶体结构被细化为最终R1 = 0.0216,并且接近于化学计量比为M7O11而不是尖晶石中的M9O12的缺陷尖晶石。氧层的堆积不是三次密堆积,沿着[111]产生标准的ABCABC序列,而是沿着[100]的六边形序列ABACBC,其中两个中心层发生位移,改变了一些原子的配位。对于合成化合物Ba2Ti9、25Li3O22,SrLiCrTi4O11和SrLiFeTi4 O11,这种结构拓扑是已知的。卡梅拉石中的M1位置与职业呈金字塔形1 + 4配位(Al0.68Mg0.22Sc0.043 + Ca0.03Y0.02Hf0.01)。4个八面体位点的占用是:M2-(Zr0.854 + Ti0.153 +); M3-Ti1.003 +; M4-(Ti0.863 + Al0.14); M5-(Ti0.873 + Al0.13) )⁠; 对于四面体位点是(Al0.87Si0.13)。考虑到位点的多样性,基于结构细化的经验公式为(Ti3.753 + Al1.94Zr0.85Mg0.22Si0.14Sc0.043 + Ca0.03Y0.02Hf0.05)Σ7.00O11。Carmeltazite这个名称来源于卡梅尔山和矿物中存在的主要金属,即钛,铝和锆(“ TAZ”)。整型标本存放在意大利佛罗伦萨佛罗伦萨大学的自然博物馆。DBH-J。Förster,L.Bindi,G.Grundmann和CJ Stanley(2018)来自德拉贡(玻利维亚)的Cerromojonite,CuPbBiSe3:勃艮第集团的新成员。矿物,8(10),420.H.-J. 福斯特(Förster),宾德(L.Bindi),格伦德曼(G.Grundmann)和史丹利(CJ Stanley)(2018年)来自ElDragón(玻利维亚)的CuPbBiSe3:勃艮第集团的新成员。矿物,8(10),420.钙锰铁矿(IMA 2018-049),理想的是斜方晶的CuPbBiSe3,是一种新的硼锌矿族硒化物,钠锰矿CuPbBi(S,Se)3的硒类似物。它是在玻利维亚波托西省的ElDragón矿中发现的,并以该地区最高的山峰塞罗·莫洪(Cerro Mojon)命名。初级和次级硒化物的多相组合发生在一条剪切带上,剪切带切割一系列薄层状,富含黄铁矿的黑色页岩和带红灰色,含赤铁矿的粉砂岩,厚度为0.5至2 cm。先前在ElDragón(Förster等人的“ C”相,2016年)中描述了与铜铁矿相似的相,并在U-Se-多金属矿床Schlema-Alberoda,Erzgebirge,德国(Dymkov等,1991)。但是,没有提供结构数据。在ElDragón的铜铁矿中,发现了两种由fSe / fS比> 1的低T水热流体沉积的矿物组合。在第一个中,它以高达30 µm的晶粒的形式出现在杂辉石/汉石块晶共生体的空隙中(形成类似角网状的齿间质构),部分与Penroseite,klockmannite,watkinsonite,clausthalite或很少的锂辉石一起出现。这些聚集体由Umangite和Klockmannite胶结并沉积在Krut'aite-Penroseite的表面。在第二种情况下,铜辉石出现在高达2 mm×200 µm的板条状或针状聚集体中,在上述的层间聚集体之后被解释为假晶。它形成细长的薄板状晶体(最大200×40 µm),与沃金森尼矿或拟锌矿,钙钛矿,镍铁镍矿和未定义的硒化物亚平行共生,均由克洛克曼石胶结。钙蒙脱石晶粒的外观类似于尖晶石质地,表明快速结晶。这些聚集体沉积在角砾状克鲁特岩-镁橄榄石晶粒的空隙中。晚熟的克洛克锰铁矿,充满缝隙的黄铜矿,陨石,针铁矿,petříčekite和krut'aite以及天然硒会改变这种关联的所有矿物。硅钙铁矿是黑色的,不透明的,具有金属光泽和黑色条纹。它是脆性的,具有不规则的断裂,并且没有明显的分裂和分离。由于晶粒小,无法测量密度和硬度;Dcalc = 7.035g / cm 3。在反射光下 钙蒙脱石为弱多色性灰色至乳白色,没有内部反射。它是各向异性的,具有棕色和灰色阴影的旋转色调。{110}上的层状孪晶很常见。空气中的反射率值(R1,R2,nm)为(COM波长为粗体):47.0、48.0、400;47.2、48.6、420;47.5、49.3、440;47.8、50.0、460;48.8、50.3、470;48.1、50.6、480;48.3、51.1、500;48.3、51.5、520;48.3、51.7、540;48.2、51.8、546;48.1、51.9、560;47.9、52.0、580;47.8、52.0、589;47.7、52.1、600;47.5、52.1、620;47.3、52.0、640;47.2、52.0、650;47.1、51.9、660;46.9、51.7、680;46.8、51.6、700。24个点电子探针WDS分析的平均值[wt%(范围)]为:铜7.91(7.40–8.16),银2.35(2.16-2.54),汞7.42(7.19–7.60),铅16.39 (16.15–16.77),铁0.04(0–0.18),镍0.02(0–0.18),铋32.61(32.19–32.91),硒33.37(32.93–33.81),总计100.11。没有检测到Co,As,Sb和S的浓度。基于6 apfu的经验公式为(Cu0.89Hg0.11)Σ1.00(Pb0.56Ag0.16Hg0.15Bi0.11Fe0.01)Σ0.99Bi1.00Se3.01。最强的X射线粉末衍射线[dÅ(I%; hkl)]为:4.00(20; 002),3.86(25; 120),2.783(100; 122),2.727(55; 212),2.608( 40; 310),1.999(25; 004),1.992(20; 330),1.788(20; 412)。从粉末数据精炼的晶胞值是a = 8.2004(6),b = 8.7461(5),c = 8.0159Å,V = 574.91Å3。在0.040×0.055×0.060 mm的晶体碎片上获得的单晶X射线数据表明,钙蒙脱石是正交晶的,空间群为Pn21m,a = 8.202(1),b = 8.741(1),c = 8.029(1)Å, V = 575.7Å3,Z =4。对于701 Fo>4σ(Fo)反射,晶体结构被细化为R1 = 0.0256(对于所有1359个唯一反射,均为0.0315)。它与勃艮第族的其他成员相同,由[7,9] Pb-多面体,[3 + 2、3 + 3] Bi-多面体和CuSe4四面体组成,它们共享拐角和边缘以形成三个维度的框架;CuSe4四面体共享角以形成平行于[001]的链。确定了给出晶体化学经验公式[Cu0.88Hg0.12] Bi [Pb0.56Ag0.16Hg0.14Bi0.110.04] Se3的位点种群,并与观察到的键距和化学数据高度吻合。X射线晶体保存在意大利佛罗伦萨大学史蒂根分校的Dipartimento di Scienze della Terra中。抛光部分(整型)位于伦敦自然历史博物馆。另一个抛光的部分(共型)存放在德国的慕尼黑矿物学国家收藏中(Mineralogische StaatssammlungMünchen,博物馆“ Reich der Kristalle”)。DBIO Galuskina,F.Gfeller,EV Galuskin,T.Armbuster,Y.Vapnik,M.Dulski,M.Gardocki,L。第四部分:巴勒斯坦人纳哈尔·达尔加(Nahal Darga)的Dargaite,BaCa12(SiO4)4(SO4)2O3。矿物学杂志,83(1),81–88。IO Galuskina,F。Gfeller,EV Galuskin,T。Armbruster,Y.Vapnik,M.Dulski,M.Gardocki,L。Jeżak和M. Murashko(2019)新源自亚焦岩的红铁矿具有模块化结构的矿物。第四部分:巴勒斯坦人纳哈尔·达尔加(Nahal Darga)的达尔加特,BaCa12(SiO4)4(SO4)2O3。矿物学杂志,83(1),81-88。达格派(IMA 2015-068),理想的是三角形的BaCa12(SiO4)4(SO4)2O3,是该弧芒岩组的新成员。它最初与同结构的纳比蒙脱石一起在巴勒斯坦自治区Jabel Harmun的焦亚变质闪长岩中发现(Galuskin等,2015)。在巴勒斯坦自治区哈哈尔·达尔加,朱迪亚山,西岸,巴勒斯坦自治区的闪锌矿假砾岩中的闪锌矿卵石中发现了较大的晶粒(聚集体中最高可达30–40 µm,最高可达100–150 µm)(31°36.5′N,35°22.7) 'E)允许对dargaite进行完整描述,并以其所在地命名。最近,在沿以色列领土死海裂谷分布的Hatrurim复杂岩体(“斑驳带”)的亚变质岩中发现了达加铁矿以外的六种新的超晶硅超族矿物,它们具有由白云母Ca3(SiO4)O构成的模块化插层反钙钛矿结构。 ,巴勒斯坦自治和约旦。即(arctite组):钠云母KCa12(SiO4)4(SO4)2O2F,闪锌矿BaCa12(SiO4)4(PO4)2OF2(参见上面的摘要)和(扎多伏特族):锌闪石BaCa6 [(SiO4)(PO4)](PO4)2F,销毁BaCa6 [(SiO4)(VO4)](VO4)在图2F中,Gazeevite BaCa6(SiO4)2(SO4)2O,针状石BaCa6(SiO4)2 [(PO4)(CO3)] F。在熔岩床的巴勒斯坦自治区Ma'ale Adumim的Hatrurim Complex的榴辉岩岩石中,以及在蚀变的碳酸盐异种岩中(与菱铁矿,亚铁酸盐,萤石,萤石,辉沸石,水铝钙石和绿泥石组成的非常稀有的〜30 µm颗粒),也发现了钠长石。沙迪-科赫火山,奥塞梯南部。辉石的形成与局部焦亚型副产物(气体,流体和熔体)有关,这些副产物在约900°C时转变了较早的矿物缔合。在整型标本中,主要矿物为闪锌矿,萤石-氟磷灰石,褐煤,萤石-萤石,fluor石等。很少提及菱镁矿,舒拉米石和周长石。钠铁锰矿,钠铁锰铁矿和钙铝矾石发生在线性区域中,孔隙率较高。毛孔中填充有钙矾石和氢硅酸钙,较不常见的有三水铝石,水镁石,重晶石,滑石粉和钙铝矾石。Dargaite无色透明,具有白色条纹和玻璃光泽。它在{001}上表现出明显的分离和不完美的裂解。显微压痕硬度VHN = 423(380–492)kg / mm2,相当于莫氏硬度的约4.5–5.5。由于存在大量的菱锰矿和野草,因此无法测量密度。Dcalc = 3.235g / cm 3。钠铁矿是非疏油性的,光学单轴(-),ω= 1.643(3),ε= 1.639(3)(589 nm)。Ma'的整型和辉绿岩的拉曼光谱 ale Adumim和Shadil-Khokh对应于含Ba的纳美石,并在(cm-1)处包含主要谱带:70、122、129、263和323(晶格模式,Ba-O,Ca-O振动);401 [ν2(SiO4)4–]; 464 [ν2(SO4)2–]; 523 [ν4(SiO4)4–]; 563 [ν4(PO4)3–]; 641,644 [ν4(SO4)2–]; 829、869 [两种(SiO4)4–的v1];947 [ν1(PO4)3-](Shadil-Khokh的辉钼矿缺乏,且P含量低);991 [ν1(SO4)2–];1078–1080 [ν1(CO3)2–];1116 [ν3(SO4)2–];〜2270、2476、3474、3630(泛音或组合频段)。Nahal Darga(22)/ Ma'ale Adumim(16)/ Shadil-Khokh(3)中的达格铁矿的电子探针WDS分析平均值为[wt%(范围)]:Na2O 0.12(0.08-0.15)/0.25(0.18) –0.28)/0.04; K 2 O 0.94(0.85-1.04)/1.11(0.54-1.35)/0.73; 氧化镁0.14(0.10-0.18)/0.09(0.06-0.11)/0.06; CaO 55.73(55.17–56.73)/57.19(56.44–58.02)/56.30;Sr0 / nd / 0.20 BaO 9.21(8.35–9。93)/8.19(7.49-9.78)/10.12;Al2O3 0.45(0.34-0.56)/0.90(0.73-1.20)/0.32; Fe2O3 nd / 0.20(0–0.36)/0.30; SiO2 18.26(17.74-18.76)/18.74(18.28-19.39)/19.30;TiO2 0.18(0.13-0.25)/0.13(0.08-0.19)/0.47; P2O5 2.90(2.70–3.36)/2.56(1.71–4.33)/0.30; SO3 11.25(9.15-11.48)/11.12(9.23-11.78)/12.21; F 0.72(0.64-0.86)/1.32(0.97-1.53​​)/0.66;-O=F2 0.30 / 0.45 / 0.28;CO2(计算值)0.12 / 0.11 / 0.41;总计99.71 / 101.34 / 101.14。因此,基于19个阳离子pfu的经验公式为:A(Ba0.72K0.24Na0.04)Σ1.00B(Ca11.95Mg0.04Na0.01)Σ12.00T1([SiO4] 3.65 [PO4] 0.21 [AlO4] 0.11 [ Ti4 + O4] 0.03)Σ4.00T2([SO4] 1.69 [PO4] 0.28 [CO3] 0.03)Σ2.00W1(O0.54F0.46)Σ1.00W2O2/ A(Ba0.63K0.28Na0.10)Σ1.01B (Ca11.97Mg0.03)Σ12.00T1([SiO4] 3.66 [PO4] 0.08 [AlO4] 0.21 [Fe3 + O4] 0.03 [Ti4 + O4] 0.02)Σ4.00T2([SO4] 1.63 [PO4] 0.34 [CO3 ] 0.03)Σ2.00W1(F0.81O0.19)Σ1.00W2O2/ A(Ba0.79K0.19Sr0.02Na <0.01)Σ1.00B(Ca11。97Mg0.02Na0.01)Σ12.00T1([SiO4] 3.81 [AlO4] 0.08 [Ti4 + O4] 0.07 [Fe3 + O4] 0.05)Σ4.00T2([SO4] 1.82 [CO3] 0.11 [PO4] 0.05 [SiO4] 0.02)Σ2.00W1(O0.59F0.41)Σ1.00W2O2。(*参见注释。)在计算的X射线粉末衍射图中最强的线是[dcalcÅ(Icalc%; hkl)]:3.103(100; 221),2.753(95; 027),2.750(88; 0.0)。 15),2.665(63; 028),2.141(43; 2.2.14),1.797(240),1.539(58; 3.3.18)。在约0.03×0.03×0.02 mm的晶体上获得的单晶XRD数据显示,辉锰矿是三角形的,空间群R3m,a = 7.1874(4),c = 41.292(3)Å,V = 1847.32Å3,Z = 3。对于396 I>2σ(I)的唯一反射,晶体结构被细化为R1 = 0.0376。该结构由沿[001]与Ba(SO4)22-层互层的三层抗钙钛矿组件{O3Ca12(SiO4)4} 2+形成。前者由沿[001]延伸并通过SiO4四面体互连的三个面共享抗钙钛矿[OCa6]八面体的圆柱组成,而在后者中,SO6四面体与六配位的Ba连接。钠铁矿属于具有结构式AB16B26 [(T1O4)2(T2O4)2](T3O4)2W12W2的方构造体。钠铁辉石–辉锰矿系列的主要同构方案是AK + + WF–→ABa2 + + WO2–,在辉石–钙锰矿系列:T(SO4)2– + WO2–→T(PO4)3– + WF–,以及nabimusaite–ariegilatite系列:KTA(SO4)23− + O2-W→BaTA(PO4)24− +F-W⁠。该系列的四面体层A(TO4)2中的同构取代通过抗钙钛矿组件内的O / F比变化来平衡。根据针对辉铁矿和钠铁辉石的新结构模型,F进入外部抗钙钛矿层(站点W1)的О7Са6八面体。类型材料已存放在俄罗斯莫斯科俄罗斯科学院菲斯曼矿物学博物馆。DBComment:上面的经验公式是基于将F分配给中央抗钙钛矿层的结构模型计算的。考虑到在外部钙钛矿层具有F的新模型,经验公式的相应部分应写为W1(O1.54F0.46)Σ2.00W2O/ W1(O1.19F0.81)Σ2.00W2O/ W1(O1.59F0) .41)Σ2.00W2O。TA奥兹,J。Plášil,AR Kampf,A。Simonetti,LR Sadergaski,Yu-S。Chen和PC Burns(2017)钙矾石:地球上最复杂的矿物。地质,45(11),1007-1010.TA奥兹,J.Plášil,AR Kampf,A. Simonetti,LR Sadergaski,Yu-S。Chen和PC Burns(2017)钙矾石:地球上最复杂的矿物。地质,45(11),1007-1010.Ewingite(IMA 2016-012),Mg8Ca8(UO2)24(CO3)30O4(OH)12(H2O)138是四方的,是一种新的碳酸铀酰矿物,被认为是已知结构最复杂的矿物。它是在捷克共和国波西米亚Jáchymov矿区废弃的Plavno矿山的潮湿墙壁上发现的。在该地区开采铀已有100多年的历史。钙矾石是次要矿物,它是由潮湿环境中初级铀矿的后矿化氧化产生的,类似于其他铀酰碳酸盐,它可能形成于铀矿尾矿,储存库中的核废料或核反应堆熔化产品上。钙矾石与蚀变的铀矿上形成的等金黄色晶体的聚集体,最大可达0.2毫米,它与其他碳酸铀基矿物质(包括利比铁矿,偏闪石和未命名的Ca-Cu铀酰碳酸酯)形成聚集体。钙矾石晶体是透明的,具有玻璃光泽,淡黄色条纹。没有观察到孪生。矿物在紫外线辐射下是非荧光的。它是脆性的,具有不均匀的断裂并且没有可辨别的分裂。莫氏硬度估计为〜2。由于材料有限,无法测量密度。Dcalc = 2.543g / cm 3(理想公式为2.525)。矿物的各向异性非常弱(实际上是各向同性的),光学上是单轴的,呈中性,ω=ε= 1.537(白光)。拉曼光谱带为(cm-1,b –宽,s –强,w –弱,sh –肩):1379、1344、1250 [ν3(CO3)2 –反对称拉伸];1095、1107sh,1087sh [分割ν1(CO3)2 –对称拉伸];832s [ν1(UO2)2+对称拉伸]; 761、751sh,687、668、636 [ν4(δ)(CO3)2 –面内弯曲];弱340、329、317、243、203 [ν2(δ)(UO2)2+弯曲]; <200(晶格模式)。FTIR光谱显示:〜3200b,3500sh,3350sh(水的νO–H拉伸);1630w [ν2(δ)H2O弯曲]; 1494、1505sh,1332、1440sh [ν3(CO3)2 –反对称拉伸];1108w [分割ν1(CO3)2 –对称拉伸];918s [ν3(UO2)2+反对称拉伸]; 771 [ν4(δ)(CO3)2–面内弯曲]。由于制备困难和高水合晶体的真空行为,获得的微探针数据不可靠。U,Mg,Mn和Ca的浓度通过HR-ICP-MS相对于铀的比例确定。平均U /阳离子比值为:Mg 3.042(2.857-3.158); Ca 3.122(2.915–3.507);锰70.240(61.731–79.446); U 1.000。由于材料的缺乏,无法直接测定H2O和CO2的含量。拉曼光谱和FTIR光谱证实了(CO3)2-和H2O的存在。根据24 U,292 O,通过添加氢使电荷平衡的30 CO3 pfu(受晶体结构约束)为:(Mg7.89Ca7.69Mn0.34)Σ15.92(UO2)24(CO3)30O4(OH)11.84(H2O)138.16。由平均apfu值计算的氧化物重量%为:MgO 2.75,CaO 3.73,MnO 0.21,UO3 59.41,CO2 11.43,H2O 22.47;总计100%。X射线粉末衍射图中最强的反射为[dÅ(I%; hkl)]:17.8(19; 200),14.3(31; 202),10.1(74; 312,204),8.28(100; 402、314),6.61(24; 512、424、316),6.03(30; 008),5.69(36;倍数),4.774(29; 606)。通过整个模式拟合从粉末数据中提炼出的晶胞参数为a = 35.624(10),c = 48.449(13)Å,V = 61485Å3。使用同步辐射在66×44×11 µm晶体上获得的单晶X射线衍射数据显示,钠钙矾为四方晶,空间群为I41 / acd,a = 35.142(2),c = 47.974(3)Å,V = 59245Å3,Z =8。钠钙矾石的晶体结构(对于1394 Iobs>4σ(I)反射,细化为R1 = 15.15%)包含纳米级阴离子碳酸铀酰笼,该笼由三个基本结构单元(FBU)组合而成。FBU-1是UO7五角形双锥体的三元组,其单个O原子键合到所有三个铀酰多面体上,并且每个双锥体与其他两个双锥体共享其赤道边缘中的两个。在FBU-2中,铀酰离子由UO8六边形双锥体的赤道边缘的三个碳酸盐三角形配位。在FBU-3中,铀酰离子由六边形双锥体的赤道区域中的2个碳酸盐三角形和2个H2O基团配位。笼内FBU之间的连接是通过碳酸酯基团进行的。每个笼子需要24个带有6 Ca,2 Mg阳离子和H2O基团的铀酰多面体。碳酸铀酰笼通过与Ca和Mg阳离子的键以及H2O基团的H键与其他笼相连。间隙成分通常表现出部分占用和混乱。晶胞中有8个对称的等价笼子。钙矾石的发现表明,在某些系统中,纳米级碳酸铀酰笼可能是水性物种,这些都可能影响铀的地球化学行为。晶体结构的复杂度被计为单位晶格的信息含量。通过单晶XRD分析确定的钙晶石的值为每单位晶胞12 684.86位(迄今为止是矿物中最高),它不提供某些无序的H2O基团或结构中任何H原子的位置。当考虑所有单位单元的组成部分时,总信息量约为23 000比特/单位单元。Rodney C. Ewing(b。1946年生)矿物学家和材料科学家的矿物名称荣誉集中在美国加利福尼亚州斯坦福大学,致力于核材料的特性。原型标本存放在美国洛杉矶县自然历史博物馆,DBF Demartin, I.Campostrini,P.Ferretti和I.Rocchetti(2018)菲姆米特(Feemmeite)Cu2(C2O4)(OH)2·2H2O,一种来自意大利特伦蒂诺的瓦尔迪菲姆姆的新矿物。矿物,8(6),248F。Demartin,I.Campostrini,P.Ferretti和I.Rocchetti(2018)Fiemmeite Cu2(C2O4)(OH)2·2H2O,一种来自意大利特伦蒂诺Val di Fiemme的新矿物。矿物,8(6),248Fiemmeite(IMA 2017-115),理想的是Cu2(C2O4)(OH)2·2H2O,单斜晶,发现于Passo di San Lugano,Val di Fiemme,Carano,Trento,意大利(北纬46.312度,东经11.406度),并因其类型所在地而得名。它发生在瓦尔加迪纳砂岩(上二叠纪)底部的煤化木树干中,这些树干被含铜,铀,砷,铅和锌的矿化溶液渗透。矿化称为“砂岩-铀型”辊前沉积物。草酸盐阴离子源自砂岩中所含植物的成岩作用。Fiemmeite与重晶石,橄榄石,中白石,硅钙石,山形褐煤,铜矿,魔鬼石,孔雀石,石青石,沸石/变石-辉石,tennantite,菱镁矿,方铅矿相关。矿物质聚集的天蓝色片状晶体的最大聚集距离为1 mm,最大约50 µm。条纹为淡蓝色,光泽从玻璃色到蜡状。它易碎,断裂不均匀,与{010}或{001}平行时几乎完全断裂。硬度不确定。Dmeas = 2.78(1)g / cm3,Dcalc = 2.802 g / cm3。菲姆石是高度双折射的,最小和最大折射率为1.54和1.90。没有获得其他光学性质;ncalc = 1.64。拉曼光谱显示谱带(cm-1):3471、3438(与发现的氢键长度范围2.655-2.903Å相一致);1683、1705(νaC = O); 1457(vs C–O + vs C–C); 903、853(νsC–O +δO–C = C);466、517、543(νCu–O +νC–C);298(平面外弯曲和晶格模式)。平均化学成分(未指定分析次数)[wt%(范围)]为Cu 44.00(43.79–44.24),Zn 0.09(0.06-0.12)(通过电子探针EDS分析得出的Cu和Zn);O 44.40,C 8.34,H 2.10; m / z。总计98.93。根据8个阴离子Cu2.00Zn <0.01(C2O4)(OH)2·2H2O为理论经验公式计算出O,C和H的值。即使使用低压电流和宽束,晶体也会在电子束下迅速分解。通过晶体结构分析和拉曼光谱确认了H 2 O和C 2 O 3的存在。未检测到其他重要元素数量。X射线粉末衍射图中最强的反射是:[dÅ(I; hkl)] 9.71(55; 002),7.02(28; 012),5.079(100; 020),4.501(50; 022), 3.072(58; 112),2.891(20; 113),2.730(15; 026),2.686(25; 114)。从粉末XRD提炼的晶胞参数为a = 3.4345(5),b = 10.159(2),c = 19.412(3)Å,β= 90.83(1),V = 677.5Å3。单晶X射线数据显示,纤锌矿为单斜晶,空间群:P21 / c,a = 3.4245(6),b = 10.141(2),c = 19.397(3)Å,β= 90.71(1)°, V = 673.6Å3,Z =4。对于1942年观察到的晶体结构,精细化为R1 = 0.0386 [I> [2σ(I)]反射,所有氢原子都位于“差分-傅立叶”图中。不对称单元包含两个独立的Cu2 +阳离子,它们显示出扭曲的方形双锥体(4 + 2)配位,一个草酸根阴离子,两个羟基阴离子和两个水分子。两个铜原子的配位多面体共享共同的边缘,以形成沿着[100]组成的[Cu2(C2O4)(OH)2·2H2O] n聚合物行。这些行通过不参与与铜的配位的草酸盐氧之间的氢键,水分子的氢原子和羟基阴离子保持在一起。据报道,这种类型的聚合物行的一部分存在于中间白铁矿Cu 2 C 2 O 4(OH)2的结构中,其中这些行互连以形成通道,其中羟基的氢原子位于该通道中。纤铁矿的全型存放在意大利特伦托的特伦托科学博物馆。DBJPlášil,AR Kampf,J.Sejkora,J.Čejka,R.Škoda和J.Tvrdý(2018)Horákite,一种来自Jáchymov(捷克共和国)的新型水合双氧铀-砷酸锰-磷酸盐矿物,具有独特的铀-阴离子拓扑结构。地质科学杂志,63,265–276.J。Plášil,AR Kampf,J。Sejkora,J.Čejka,R.Škoda和J.Tvrdý(2018)Horákite,一种来自Jáchymov(捷克共和国)的新型水合双氧铀铋-砷酸盐-磷酸盐矿物,具有独特的双氧铀阴离子结构。地质科学杂志,63,265–276.Horákite(IMA 2017-033),理想情况下是(Bi7O7OH)[(UO2)4(PO4)2(AsO4)2(OH)2]·3.5H2O,单斜晶系,是一种新的铀酰在捷克共和国贾西莫夫(圣约阿希姆萨尔)的旧私人收藏标本上发现的矿物(最有可能是从罗夫诺斯特矿山的盖斯特矿脉获得的)。它是第一种同时含有磷酸盐和砷酸盐作为必需成分的铀酰矿物。Horákite发生在含有稀薄石英细脉的髓性云母片中。它是一种超基因蚀变矿物,与石英脉石中的磷灰石(过度生长的老米托贝石-变质亚铁矿)结合,并伴有钙锰矿和细粒尿素矿。Horákite形成绿黄色至浅黄色透明至半透明棱柱形至片状晶体,在[001]上成簇状,聚集体的最大间距为1 mm。矿物具有淡黄色的条纹和玻璃光泽。分裂在{100}上是完美的。莫氏硬度为〜2。密度未测量;Dcalc = 6.358g / cm 3。Horákite是非疏油性的,在光学上是双轴的(+),α≈1.81,β≈1.84,γ≈1.88(白光);2V = 78(1)°,2Vcalc = 83°; X = b,Z≈c。没有观察到分散。拉曼光谱的主要谱带(cm-1; w –弱,s –强,sh –肩,b –宽)是:3580 wb,肩在3410(氢键合的OH–和H2O的v O–H拉伸) ); 1103、1081、1069、1055、1039的一系列弱带[(PO4)3–多面体的三度简并ν3反对称拉伸];1030–930w [(PO4)3-的v1对称拉伸];879和864 [ν3(UO2)2+振动];850sh,801s [v1(UO2)2+对称拉伸以及δ-UOH(面内)弯曲模式和AsO4四面体的三次简并ν3反对称拉伸振动];774(AsO4的ν1对称拉伸); 640–520w(PO4四面体的简并ν4弯曲和Bi–O拉伸);510–360(AsO4的双重简并ν2弯曲振动,Trio简并的ν3弯曲,Bi–O拉伸和Bi–O–Bi弯曲振动);380–280(AsO4的ν2弯曲简并和Bi–O拉伸);271sh,251、228sh [(UO2)2+组的双重简并ν2弯曲振动]; 189、163、147、123、105、74和48 [外部晶格振动模式和(UO2)2+平移和旋转]。在应发生ν2(δ)H–O–H弯曲振动的地方未观察到拉曼带。21点电子探针WDS分析的平均值为[wt%(范围)]:PbO 0.99(0–1.75),Bi2O3 50.22(49.00–51.33),UO3 35.58(33.47–37.66),SiO2 0.85(0.60–1.27), P2O5 4.47(4.09–5.91),As2O5 5.21(4.28–5.91),H2O(受结构约束)2.77,总计100.09。基于37.5 O apfu的经验公式为(Bi7.01Pb0.14)O7OH [(U1.01O2)4(P1.03O4)2(As0.74Si0.23O4)2(OH)2]·3.5H2O。最强的X射线粉末衍射线为[dÅ(I; hkl)]:11.77(100; 110),6.21(23; 202),5.55(23; 310,112),4.19(27; 331),3。54(61; 510,423),3.29(20; 331),3.14(58; 241,023),3.02(98; 150,113,533,多个)。在0.020×0.012×0.010 mm的晶体上获得的单晶X射线数据表明,竖晶石为单斜晶,C2 / c,a = 21.374(2),b = 15.451(3),c = 12.168(2)Å, β= 122.26(1)°,V = 3398.1Å3,Z =4。对于1774次独特的[Iobs>3σ(I)]反射,晶体结构细化为R = 0.0595。这种新颖的薄片结构包含2个U位,4个Bi位,2个T位被P和As共同占据(T1位主要被As5 +占据,而T2几乎完全被P 5+占据)和20个O位(其中3个是OH基团和4个H2O基团)。它由拓扑上唯一的[(UO2)4(PO4)2(AsO4)2(OH)2]片(horkkite拓扑)和一个间隙{{Bi7O7OH)(H2O)3.5}络合物组成。片材是由UO7五边形双锥体通过共享边形成四聚体单元而聚合而成的。四面体协调的位点既单齿地(T1到U1)又齿状地(T2到U2)连接到UO7。这个名字是为了纪念采矿工程师FrantišekHorák(1882-1919),1916年至1918年在圣约阿希姆斯塔尔(雅基莫夫)的镭工厂负责人以及他的孙子VladimírHorák(1964年生),他是一名业余矿物学家。贾奇莫夫矿区的采矿历史。整型标本存放在美国加利福尼亚州洛杉矶县自然历史博物馆中,DBNV Chukanov,NV Zubkova,SN Britvin,IV Pekov,MF Vigasina,C.Schäfer,B.Ternes,W.Schüller,YS Polekhovsky,VN Ermolaeva,和D.Yu 普什恰洛夫斯基(Pushcharovsky)(2018)铌铁矿-(Ce),(Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2 + O14,来自德国埃菲尔火山地区的一种新的与锆石相关的矿物。矿物,8(10),449.NV Chukanov,NV Zubkova,SN Britvin,IV Pekov,MF Vigasina,C.Schäfer,B.Ternes,W.Schüller,YS Polekhovsky,VN Ermolaeva和D.Yu. 普什恰洛夫斯基(Pushcharovsky)(2018)新石蜡-(Ce),(Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2 + O14,这是一种来自德国埃菲尔火山地区的新型锆石相关矿物。矿物,8(10),449.新钠铁矿-(Ce)(IMA 2017-107),(Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2 + O14,斜方晶系,是一种新的矿物。在门迪格附近的登德伦(Zieglowski)浮石采石场,德国莱茵兰-普法尔茨州埃菲尔地区拉赫湖(Laacher See)古沃洛卡诺。在Sanidinite火山喷口中发现的矿物,其中包括Sanidine,深色云母,磁铁矿,Baddeleyite,Nestan和Chevkinite类矿物。磷灰石-(Ce)形成棕色至非常深的红褐色,几乎呈黑色,半透明至透明的棱柱形晶体,通常为孪晶,最大尺寸为0.1×0.1×1.0 mm,被[001]延长或分离成无规聚集体。晶体形式为:{100},{010},{110},{120},{111}和次要{001}。孪生平面是(130)。矿物具有金刚烷光泽和棕红色条纹。它是脆性的,具有不均匀的断裂并且没有分裂。显微压痕硬度VHN20 = 615 kg / mm2,相当于莫氏硬度的5½。没有测量密度;Dcalc = 5.332g / cm 3。在反射光中,钠钙长石-(Ce)为浅灰色,内部反射为红棕色,各向异性较弱。未报道多发性。反射率值(R1,R2,nm)COM波长以粗体显示:17.3、16.8、400;16.8、16.4、420;16.4、16.0、440;16.0、15.5、460;15.8、15.3,470;15.6、15.2、480;15.3、15.0、500;15.3、14.8、520;15.0、14.7、540;15.0、14.7、546;15.0、14.6、560;14.9、14.6、580;14.9、14.5、589;14.8、14.5、600;14.8、14.5、620;14.8、14.4、640;14.8、14.4、650;14.8、14.4、660;14.7、14.4、680;14.7、14.3、700。计算出的平均折射率为2.267。拉曼光谱显示的波段范围为(cm-1):400-800 [(Ti,Nb,Zr)-O拉伸];100–400 [(REE,Ca)–O拉伸和O–(Ti,Nb,Zr)–O弯曲振动]。900 cm-1以上的宽广特征对应于由于大量REE引起的发光。缺少对应于氢基团和CO32-阴离子的谱带。拉曼光谱类似于孔雀石Ca2Zr2Nb2TiFeO14的拉曼光谱,其中(REE,Ca)–O-和(Ti,Nb,Zr)–O拉伸振动的频带分别移向较高和较低的值。整型/共型样品的WDS电子探针分析的未指定数量的平均值[wt%(范围)]为:CaO 5.45(5.27-5.55)/5.29(5.12-5.39),MnO 4.19(4.07-4.32)/4.16(4.06) –4.34),FeO 7.63(7.46-7.79)/6.62(6.23-6.83),Al2O3 0.27(0.18–0.38)/0.59(0.48–0.78),Y2O3 0.00 / 0.90(0.61-0.99),La2O3 3.17(3.05-3.28) )/3.64(3.47–3.84),Ce2O3 11.48(11.27–11.73)/11.22(10.95–11.69),Pr2O3 1.04(0.89–1.24)/0.92(0.90–0.97),Nd2O3 2.18(2.10–2.34)/2.46(2.28) –2.81),ThO2 2.32(2.11–2.50)/1.98(1.79–2.17),TiO2 17.78(17.45–18.12)/18.69(18.49–18.90),ZrO2 27.01(26.82–27.26)/27.69(27.51–27.86),Nb2O5 17.04(16.72–17.37)/15.77(15.53–15.99);总计99.59 / 99.82。未检测到Z> 8的其他元素。根据结构数据和与类似的孔雀石,铁和锰分别被认为是Fe2 +和Mn2 +。基于14 O pfu的经验公式为:(Ce0.59La0.17Nd0.11Pr0.05)Σ0.92Ca0.82Th0.07Mn0.50Fe0.90Al0.05Zr1.86Ti1.88Nb1.07O14(整型)和(Ce0.57La0。 19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14(cotype)。粉末X射线衍射图的最强线[dÅ(I%; hkl)]为:2.963(91; 202),2.903(100; 042),2.540(39; 004),1.823(15; 400) ,1.796(51; 244),1.543(20; 442),1.519(16; 282)。从粉末数据精炼的晶胞参数为a = 7.296(1),b = 14.147(2),c = 10.161(1)Å,V = 1048.9Å3。从0.01×0.01×0.10 mm晶体获得的单晶X射线数据表明,钠钙铁矿(Ce)为正交晶,空间群Cmca,a = 7.2985(3),b = 14.1454(4),c = 10.1607(4 )Å,V = 1048.99Å3,Z =4。采用直接方法求解晶体结构,并将其精炼为R = 0。0198,用于574个独特的I>2σ(I)反射。该结构显示了两种类型的弯曲多面体层的交替:八面体层和具有7倍和8倍配位的阳离子层。八面体层是通过顶点共享M(3)O6和M(4)O6八面体形成三元和六元环而建立的,而M(5)和M(6)的位点位于六元中心戒指。邻位M(5)和M(6)的配位数分别为4和5,在统计上被Fe2 +作为主要阳离子占据。M(1)站点是一个变形的多维数据集,它与相邻的M(1)多维数据集共享边以沿a轴形成行。类似的行由七倍的M(2)单封八面体形成。八面体和七面体多面体的相邻行通过共同的边缘相互连接,从而形成致密层。钠钙长石-(Ce)的晶体化学分子式为:M(1)VIII(LREE0.88Ca0.80Mn0.24Th0.08)M(2)VII(Zr1.88Mn0.12)M(3)VI(Nb1.22Ti0 .78)M(4)VI(Ti1.48Nb0.48Al0.04)M(5)IV(Fe0.48Mn0.08)M(6)V(Fe0.40Mn0.04)2O14。Nöggerathite-(Ce)是Zirconolite-3O的类似物CaZrTi2O7,在两个八面体位点之一中Nb优先于Ti,而在八倍配位位点REE优先于Ca。这个名字是为了纪念约翰·雅各布·涅格勒(Johann JacobNöggerath,1788-1877年),他是德国矿物学家和地质学家,波恩大学矿物学和地质学教授。他的出版物中有Laacher See古火山岩地区的地质描述。这类材料存放在俄罗斯莫斯科的俄罗斯科学院费斯曼矿物学博物馆。DBTA Olds,J.Plášil,AR Kampf,F.Dal Bo和PC Burns(2018)Paddlewheelite,来自捷克共和国波西米亚贾奇莫夫区的新型碳酸铀酰。矿物,8(11),511.TA Olds,J.Plášil,AR Kampf,F.Dal Bo和PC Burns(2018)Paddlewheelite,一种来自捷克共和国波西米亚雅奇莫夫区的新型碳酸铀酰。矿物,8(11),511.桨轮石(IMA 2017-098),MgCa5Cu2 [(UO2)(CO3)3] 4·33H2O,单斜晶系,是一种新的铀酰碳酸酯矿物,在5号Prokop脉分叉处发现。捷克共和国波西米亚Jáchymov区的Svornost废弃地下矿山。该矿是代表经典热液Ag-Co-Ni-Bi-As±U(五元素脉型)矿床地区的主要矿团之一。新矿物质是开采后氧化的产物之一。它的结晶需要伴随分解尿石,方解石,白云石,黄铜矿,和安山石。桨叶轮石与方解石,白云石和黄铜矿一起出现在富锰铁矿的普罗科普脉地区。其他密切相关的矿物包括棺材化的铀矿,石英,赤铁矿和针铁矿(变种为“三水闪石”)。矿物形成解理涂层和楔形片状晶体,被{100}压平至〜400 µm,没有明显的孪晶。晶体为蓝绿色,透明,具有亚金刚烷光泽和非常淡的蓝绿色条纹。桨轮在紫外线下不会发出荧光。它易碎,莫氏硬度为〜2,在{100}上至少有一个完美的解理。由于晶体的可用性有限,因此无法测量密度。Dcalc = 2.435g / cm 3(理想公式为2.497)。在室温下,泡腾液立即泡腾后溶于稀盐酸中。在平面偏振透射光中,矿物是多向性的,X≈Y(蓝绿色)>> Z(淡黄色)。它是光学双轴(+),α= 1.520(2),β= 1.527(2),γ= 1.540(2)(白光),2V = 72°(1),Z // b,X = a, Y = c。光轴的色散弱r <ν。桨轮的FTIR光谱显示特征为(cm-1; w –弱,s –强):跨度范围从〜3500到〜2800(3515,3377,3200,3026,2850)与H2O的νO–H拉伸有关; 1632w [水的ν2(δ)弯曲振动];1591w,1544w,1498s,1459w,1410s,1379w,1351s,1289w [分割ν3(CO3)2 –反对称拉伸];1115w [ν1(CO3)2 –对称拉伸];931.5vs [ν3(UO2)2+反对称拉伸,可能会使ν2(δ)(CO3)2-掩盖];771w [ν1(UO2)2+或ν4(δ)(CO3)2–面内弯曲振动的巧合]。六个电子探针WDS分析的平均值[wt%(范围)/ wt%归一化为总100%)]为:CaO 12.47(11.71–13.38)/10.74,CuO 2.65(1.64–3.26)/2.28,FeO 0.01(0 –0.04)/0.01、MgO 1.7(1.16-1.93)/1.47、SiO2 0.42(0-0.93)/0.36、UO3 49.38(48.22-50.69)/42.97、CO2(基于结构)22.8 / 19.84,H2O(基于结构)结构)25.66 / 22.33; 总计115.09 / 100.00。晶体严重脱水并在真空中破裂,导致铀含量高。分析期间大量消耗铜是由于使用了高束电流(15 kV,30 nA,5 µm束直径)。未检测到Z> 8的其他元素。FTIR证实了H2O和CO32-的存在。基于77 O,4 U和12 CO3 pfu的经验公式为Mg0.98Ca5.16Cu0.77Si0.16(UO2)4(CO3)12(H2O)33。给出平均经验阳离子公式Mg0.40Ca3,尝试使用LA-ICP-MS失败。20Cu1.26U4.00。粉末X射线衍射图中最强的线是[dÅ(I%; hkl)]:11.12(100; 111),9.69(22; 002),8.63(18; 020),7.33(46; 202) ,6.42(30; 022、221),5、54(37; 222),4.823(33; 004、402),4.642(38; 313),4.215(34; 024),3.717(33; 115、333) 。通过整个模式拟合从粉末数据中提炼的晶胞参数为a = 22.061(4),b = 17.128(3),c = 19.368(3)Å,β= 90.476°(2),V = 7318Å3。在5×40×50 µm晶体上获得的单晶X射线数据表明,桨轮为单斜晶系,空间群Pc,a = 22.052(4),b = 17.118(3),c = 19.354(3)Å,β = 90.474°(2),V = 7306Å3,Z =4。对于17626 I>2σ(I)反射,晶体结构细化为R1 = 0.0706。桨轮式晶体结构包含铀矿物质的几种最初已知实例,包括孤立的方形金字塔形CuO5多面体“轴”和立方CaO8“齿轮箱”。这两个独特的多面体与六角形双锥体三碳酸铀酰(UO2)(CO3)34-单元(UTC)结合,形成类似于汽船桨轮的簇,在矿物名称中得到反映。四个UTC“桨”通过与碳酸盐三角形共享拐角而绑定到两个Cu方锥的底部,形成每个“桨轮”的“轴”,以立方钙“齿轮箱”为中心,该立方钙“齿轮箱”从四个角中的每个共享两个O原子UTC单元形成一个“桨轮”四重音簇。每个CuO5方形金字塔的顶部O原子与相邻UTC桨的CO3基团共享一个角。每个“轮子”上的两个UTC“桨”形成了纸的平面度,和Ca位置的7配位多面体将“叶轮”连接在一起,成为一个开放式拓扑表。八面体配位的Mg阳离子位于上方薄片中“叶轮”之间的孔中,因此,一个Mg阳离子与一个叶轮单元配位。x =½和x = 0的两个独特的“桨轮”几乎相同,只是“桨轮”的旋转略有不同。不同片材的“叶轮”之间没有直接接触,仅通过氢键连接。薄片之间的间隙由11个无序的H 2 O基团和22个与Ca和Mg阳离子结合的H 2 O基团填充。每个Ca位点具有可变数目的(3至6个)配位的H2O基团,而每个Mg均与5个H2O基团结合。因此,可以将理想的桨轮式公式写为Mg(H2O)5Ca5(H2O)17Cu2 [(UO2)(CO3)3] 4·11H2O。该结构与其他具有桨状图案的碳酸铀酰矿物质有一些相似之处:褐铁矿,褐铁矿,brechtschraufite和锰铁矿。桨轮石是仅次于镁辉石Mg8Ca8(UO2)24(CO3)30O4(OH)12(H2O)138的第二多结构复杂的碳酸铀酰矿物,它与化学描述不足的矿物火山岩Ca2Cu(UO2)(CO3)4相关·6H2O晶体结构未知。整型标本存放在美国洛杉矶县自然历史博物馆中DBA Pieczka,C.Biagioni,B.Gołębiowska,P.Jeleń,M.Pasero和M.Sitarz(2018)Parafiniukite,Ca2Mn3(PO4)3Cl,a波兰下西里西亚Szklary伟晶岩中磷灰石超群的新成员:描述和晶体结构。矿物,8(11),485.A. Pieczka,C.Biagioni,B.Gołębiowska,P.Jeleń,M.Pasero和M. Sitarz(2018)Parafiniukite,Ca2Mn3(PO4)3Cl,来自波兰下西里西亚Szklary伟晶岩的磷灰石超族的新成员:描述和晶体结构。矿物,8(11),485.钠辉石(IMA 2018-047),理想的是Ca2Mn3(PO4)3Cl,单斜晶系,是Szklary LCT伟晶岩(50°39.068)的磷灰石超族新矿物(Pasero et al.2012)。 ′N,16°49.932′E),ZąbkowiceŚląskie镇北约6公里,波兰下西里西亚弗罗茨瓦夫以南约60公里。Szklary伟晶岩是由NNE-SSW细长透镜或约4×1 m的布丁在平面截面上形成的,其与侵入的片麻片麻岩初次侵入接触,厚达2 m,两个岩石都被构造化的蛇纹石包围。伟晶岩代表稀有元素(REL)–Li伟晶岩类sensuČerný和Ercit(2005)的绿柱石-钴钴矿-磷酸盐亚型。发现副辉石散布在伟晶岩的中部和中央区域,与直径不超过1 cm的小块贝氏石紧密结合,经历了强烈的蚀变,转变为锰氧化物和蒙脱石的次生组合,其中辉锰矿和稀有的副辉石通常只能存活下来,大小不超过250微米。矿物是透明的,呈深橄榄绿色,有时被锰氧化物掩盖。具有玻璃光泽,易碎,断裂不规则,不均匀。没有观察到晶型和孪晶。由于矿物的性质,因此无法确定条纹,硬度,密度以及主要光学特性。Dcalc = 3.614 g / cm3; ncalc = 1.731。莫氏硬度估计为4-5(与方石英类似)。拉曼光谱显示在(s =强; m =中等;w =弱):〜955s,1019m和1105w [(PO4)3–组的拉伸振动];〜615w,593m,575m和425m [(PO4)3–组的弯曲振动];低于300左右的峰较弱(Ca和Mn多面体的形变);〜3485(O–H拉伸)。10个电子探针WDS分析的平均值[wt%(范围)]为:P2O5 39.20(38.98–39.44),MgO 0.19(0.12–0.27),CaO 24.14(23.66-24.64),MnO 31.19(30.04–31.78),FeO 2.95(2.72-3.15),Na2O 0.05(0.01-0.07),F 0.39(0.29-0.46),Cl 3.13(3.00-3.29),H2O [根据化学计量计算,具有1(OH + F + Cl)pfu] 0.68(0.61-0.71),-O =(F2 + Cl2)0.87,总计101.05。基于12 O和1(F,Cl,OH)pfu的经验公式为(Mn2.39Ca2.34Fe0.22Mg0.03Na0.01)Σ4.99P3.00O12[Cl0.48(OH)0.41F0.11]。计算出的粉末X射线衍射图中最强的线是[dcalcÅ(Icalc%; hkl)]:3.239(39; 002),2。801(55,211),2.801(76; 121),2.740(100; 300),2.675(50; 112),2.544(69; 202),1.914(31; 222)和1.864(22; 132)。从在0.07×0.04×0.03 mm晶体上收集的单晶衍射数据获得的晶胞参数为a = 9.4900(6),c = 6.4777(5)Å,V = 505.22(5)Å3,六角形,P63 / m, Z =2。Fo>4σ(Fo)时,在320次反射中晶体结构细化为R = 4.63%,在422次反射中,Rall = 6.76%。它的拓扑类似于磷灰石超群其他成员的拓扑。M(1)和M(2)位点分别是Ca和Mn占主导地位,而Cl是占优势的X阴离子。M(2)网站具有七倍的协调性和混合(Mn,Ca)占用(理想化为Mn0.63Ca0.37)。Mn在M(2)位点的优先排序因X位点上出现Cl阴离子而受到促进,当X = F时,Mn倾向于在M(1)处有序排列。准钠石对应于Tait等人假设的端成员组成Ca2Mn3(PO4)3Cl。(2015),以及随后的Pasero等。(2010年)是磷灰石超群中Hedyphane集团的新成员。矿物的名称是由波兰华沙大学地球化学,矿物学和岩石学研究所的矿物学教授Jan Parafiniuk(生于1954年生)命名的。该准finiukite原型保存在波兰的弗罗茨瓦夫大学矿物科学研究所。FCR Juroszek,H.Krüger,I.Galuskina,B.Krüger,L.Jeakak,B.Ternes,J.Wojdyla,T.Krzykawski,L.Pautov和E.Galuskin(2018)Sharyginite,Ca3TiFe2O8,一种新的矿物德国贝勒贝格火山。矿物8(7),308.R. Juroszek,H.Krüger,I.Galuskina,B.Krüger,L.Jeżak,B.Ternes,J.Wojdyla,T.Krzykawski,L.Pautov和E.Galuskin(2018)Sharyginite,Ca3TiFe2O8,一种来自德国贝勒贝格火山的新矿物。矿物8(7),308. Shayginite(IMA 2017-014),理想的是Ca3TiFe2O8,正交晶,是阴离子缺乏钙钛矿族的新成员,是在贝勒贝格火山熔岩田卡斯珀采石场的碱性玄武岩中热变质的石灰岩异岩中发现的。德国莱茵兰-普法尔茨州的埃菲尔(北纬50°21′6″,东经7°14′2″)。该相以前曾被记录为Hatrurim配合物的ye-elimite-larnite焦变质岩中的伪二元钙钛矿-褐镁橄榄石系列的一员(Sharygin等人,2008年)以及上部Chegem火山岩内碳酸盐异种岩的高温矽卡岩中。北高加索地区的结构,卡巴尔达-巴尔卡里亚州 俄罗斯(Galuskin等,2008)。在奥地利施蒂里亚州Bad Radkersburg的KlöchBasalt采石场中富含钙的异岩中也发现了这一现象(Niedermayr等人,2011年),以及顿涅茨克矿场(Sharygin等人,2011年)和车里雅宾斯克煤田(Sharygin)燃烧后的碳酸盐岩2012)。先前在埃菲尔地区的异岩中发现了它(Sharygin和Wirth,2012年),但由于晶体的尺寸很小,因此尚未完全研究。在整型标本中,红锌矿广泛分布于富钙异种岩与碱玄武岩的接触区,在该区域与萤石,cuspidine,褐褐铁矿,rondorfite,镍铁矿和绿玉石-辉铁矿密切相关。在该区域中,兰金石,镁铁矿,钙钛矿和萤石较少见。建议在高温条件下钙钛矿后形成Sharyginite> 1000°C。它会被{010}晶体(最大200 µm)弄平。其他形式为{100},{001},很少是菱形金字塔。矿物为深棕色,不透明,带有褐色条纹,亚金属光泽,在{010}上具有良好的解理作用,在{001}和{100}上不完美。它是脆性的,具有不均匀的断裂并且没有分离。显微压痕硬度VHN25 = 635(621–649)kg / mm2,对应于〜5½–6的莫氏硬度。由于存在大量夹杂物,因此无法测量密度。Dcalc = 3.943g / cm 3。在反射光中,钠闪锌矿是浅灰色,具有罕见的黄褐色内部反射。它是从灰色到非常浅的灰色的弱多相性,并且各向异性很弱。COM波长加粗的空气中的反射率[Rmax / Rmin,nm]为:18.7 / 17.6,400; 18.3 / 17.4、420;17.0 / 16.0、440;16.4 / 15.6、460;16.1 / 15.5、470;15.9 / 15.4、480;15.5 / 14.9、500;15.2 / 14.5、520;15 0 / 14.3、540;14.9 / 14.2、546;14.8 / 14.2、560;14.7 / 14.1、580;14.6 / 14.1、589;14.6 / 14.1,600;14.6 / 14.0、620;14.6 / 14.0、640;14.5 / 13.9、650;14.4 / 13.7、660;14.3 / 13.5、680;14.1 / 13.4,700。拉曼光谱带(cm-1):114、145、190、248、307、389、486、560、710、752、785和1415、1475(泛音);710s [ν1(Fe3 + O4)四面体的对称拉伸],两个肩部分别位于752 [ν1(AlO4)]和785 [ν3(Fe3 + O4)]处;486和560 [(Fe3 + O4)弯曲]。低于400 cm-1的谱带归因于多面体CaO8和八面体(Fe3 +,Ti)O6的振动。在OH区域没有观察到条带。光谱类似于舒拉米特Ca3TiFeAlO8的光谱,主要区别在于主带的位置。来自俄罗斯北高加索地区的Belleberg(整型)/ Jabel Harmun(Hatrurim配合物),巴勒斯坦自治区/上部Chegem破火山口的红闪石的9/19/4电子探针WDS分析的平均值为[wt%(范围):MnO2 2.27(1.04 –3.22)/ nd / nd; SiO2 0.58(0.40–0.80)/ 1.19(1.07–1.43)/ 0.17(0.07 –0.32); SnO2 nd / nd / 0.37(0.15–0.61);TiO2 17.04(16.29-19.34)/ 17.97(16.65-18.76)/ 17.38(16.97-17.76); ZrO2 0.27(0.07-0.57)/ 0.43(0.25-0.62)/ 0.39(0.16-0.67); Al2O3 2.49(2.22-3.89)/ 3.83(3.62-4.13)/ 1.86(1.36-2.29); Cr2O3 0.20(0.07-0.42)/ 0.25(0-0.47)/ nd; Fe2O3 34.87(32.81-35.85)/ 32.80(31.70-34.54)/ 37.43(36.40-38.72); CaO 41.59(40.99-42.09)/ 42.19(41.64-42.60)/ 40.71(40.53-40.85); 氧化镁0.13(0.08-0.24)/ 0.08(0.06-0.11)/ 0.05(0.04-0.06); MnO nd / nd / 0.09(0.01–0.13);SrO nd / 0.18(0.08–0.32)/ nd;总计99.44 / 98。91 / 98.45。未检测到Z> 8的其他元素。基于8 O pfu计算的整型的经验公式为Ca3.00(Fe1.003 + Ti0.864 + Mn0.114 + Zr0.01Cr0.013 + Mg0.01)Σ2.00(Fe0.763 + Al0.20Si0。 04)Σ1.00O8⁠。完整型的菱铁矿以复杂的固溶体为代表,其最终成员为:64%的锂霞石,20%的硅藻土和11%的锰锌锰矿。诸如Ca3(Zr4 + Fe3 +)Fe3 + O8,Ca3(Fe3 + Fe3 +)SiO8,Ca3(Cr3 + Fe3 +)SiO8和Ca3(MgTi)SiO8的其他组分含量均小于1-2%。X射线粉末衍射图谱中最强的线[dÅ(I%; hkl)]为:2.763(32; 002),2.712(27; 200),2.679(100; 131),1.936(36; 202) ,1.857(19; 060),1.580(18; 133),1.559(12; 331);1.341(11; 262)。从粉末数据精炼的晶胞参数为a = 5.4262(4),b = 11.1468(7),c = 5.5308(3)Å,V = 334.5(3)Å3。从60×40×40 µm晶体获得的单晶X射线数据表明,钠闪锌矿是斜方晶,空间群P21ma,a = 5.423(2)Å,b = 11.150(8)Å,c = 5.528(2)Å ,V = 334.3Å3,Z =2。对于所有951次唯一反射,晶体结构均精炼为R = 0.024。它与舒拉米特石紧密相关(将进行详细讨论),它由角共享(Ti,Fe3 +)O6八面体的双层组成,这些双层被(Fe3 + O4)四面体的单层分隔开,形成了zweier单链。这些链是菱锰矿,辉绿岩和与结构相关的褐煤的特征。一个八面体位点由½Ti和½Fe3 +和少量Al占据。四面体部位被3/4 Fe3 +和1/4 Al占据。独立的钙阳离子位于两个八面体层(Ca2)之间以及八面体和四面体层之间(Ca1)。这个名字是为纪念俄罗斯新西伯利亚Sobolev地质与矿物学研究所的Victor Victorovich Sharygin(1964年生),他对碱性和亚变地岩石学的贡献。他还找到并发布了有关该矿物的初步数据。类型材料存放在俄罗斯莫斯科的费斯曼矿物学博物馆RAS中。DBAVymazalová,F.Laufek,SF Sluzhenikin,VV Kozlov,CJ Stanley,J.Plášil,F.Zaccarini,G.Garuti和R.Bakker(2018)Thalhammerite,Pd9Ag2Bi2S4,这是塔尔纳克和诺盖尔斯克矿床的新矿物'sk地区,俄罗斯。矿物,8(8),339.A. Vymazalová,F.Laufek,SF Sluzhenikin,VV Kozlov,CJ Stanley,J.Plášil,F.Zaccarini,G.Garuti和R.Bakker(2018)Thalhammerite,Pd9Ag2Bi2S4,这是塔尔纳赫和诺盖尔斯克矿床的新矿物,俄罗斯Sk地区。hed部分),这也是kravtsovite PdAg2S和vymazalováitePd3Bi2S2的全称。该标本起源于在科姆索莫尔斯基矿区东部Talnakh侵入岩下部外露接触以下透辉石-蒙脱钙岩矽卡岩中透辉石-水生粗磨的辉石形成的脉散型方铅矿-黄铁矿-黄铜矿矿石(北纬69°30′20″; 88)。 °27′17″ E)。在这里,硫铁矿还与堇青石,辉镁岩,vysotskite,stibiopalladinite,telargpalite,sobolevskite,kotulskite,sopcheite,insizwaite,Au-Ag合金以及含Ag的硫化物,硒化物,亚硒酸盐和碲代亚硫硒酸盐有关。在俄罗斯诺里尔斯克地区Komsomolsky矿山西部Kharaelakh侵入体的下部外接触下,由辉石角铁在脉状弥散的钙锌矿-钙铁矿-黄铜矿(塔尔纳克和Oktyabrsk矿床)中也观察到了该矿物。在后者的关联中,它发现与科图斯克石,硅藻土,硅镁石和Au-Ag合金有关。在俄罗斯Fedorov-Pana层状侵入体的PGE矿石中,在与苏威石混合的共生物中也观察到了钨铁矿。菱铁矿形成方铅矿,黄铜矿和斑脱矿中互生的微小夹杂物(几微米至〜40–50 µm)。不透明,具有金属光泽,易碎;Dcalc = 9.72g / cm 3。在平面偏振光中,菱锰矿为淡黄色,双折射弱,多色性弱,呈浅黄褐色,各向异性弱,没有内部反射。空气中的反射率值[R1 / R2%,nm],COM波长为粗体:41.9 / 43.0,400; 40.6 / 41.8、420;41.1 / 42.3,440; 41.7 / 42.8、460;41.9 / 43.0,470; 42.2 / 43.3、480;42.7 / 43.9,500;43.2 / 44.4、520;43.7 / 44.9、540;43.9 / 45.1,546; 44.2 / 45.4,560; 44.7 / 45.9,580; 44.9 / 46.1、589;45.2 / 46.3,600;45.6 / 46.8、620;46.1 / 47.3、640;46.3 / 47.5,650; 46.5 / 47.8,660; 47.0 / 48.3、680;47.4 / 48.9,700。对于每个波长,合成类似物的反射率数值相似,略高一些,为0.6-1.8%。钛铁矿和合成Pd9Ag2Bi2S4的拉曼光谱实际上是相同的,并且在122、309、362和483 cm-1处显示四个主要吸收带。平均电子探针WDS分析的完整型3个点/合成的黄铜矿(wt%)的5个点:Pd 52.61 / 55.10,Bi 22.21 / 24.99,Pb 3。92 / –,银14.37 / 12.75,S 7.69 / 7.46,Se 0.10 / –;总计100.90 / 100.30。基于17 apfu的经验公式为Pd8.46Ag2.28(Bi1.82Pb0.32)Σ2.14(S4.10Se0.02)Σ4.12/ Pd8.91Ag2.03Bi2.06S4.00。由于方铅矿晶粒尺寸小,仅获得了其合成类似物的X射线数据。EBSD,拉曼光谱和光学性质证实了合成的Pd9Ag2Bi2S4与天然材料之间的结构相同性。X射线粉末衍射图谱中最强的线[dÅ(I%; hkl)]为:3.343(24; 211),2.839(46; 220),2.569(21; 301),2.412(100; 222) ,2.325(61; 123),2.287(48; 004),2.220(29; 132),2.007(40; 400),1.748(23; 332),1.509(30; 404)。单晶X射线数据显示合成的菱锰矿为四方晶,空间群为I4 / mmm,a = 8.0266(2),c = 9.1531(2)Å,V = 589.70Å3,Z = 2。对于221个观察到的独特的[I> 3(σ)]反射,提炼为R = 0.0310的晶体结构仅被视为子结构。Rietveld细化显示了一些非常弱的未索引峰和峰分裂,这无法使用四边形模型拟合。尝试从正交晶体I4 / mmm(即Fmmm,Immm)的正交晶体子集中的单晶数据中精炼结构,导致精炼参数的快速增加导致R因子(0.0293)的降低可忽略不计。没有低对称模型可以描述合成黄铜矿的粉末衍射图中的所有峰分裂。方形亚结构包含三个Pd,一个Ag,Bi和S位。除Pd(2)(0.88的占用率)外,所有站点都被完全占用。Pd(1)位置具有S原子的完美平面正方形配位,并且进一步由两个垂直于[Pd(1)S4]正方形的Ag原子完成。Pd(2)和Pd(3)位置形成由两个S原子,两个Bi,两个Ag和其他Pd原子配位的复合多面体。Ag位点被九个Pd原子包围,形成一个单峰四方反棱柱配位体。Bi原子与八个Pd原子配位,形成一个双封端的三角棱镜。硫铁矿没有确切的结构类似物。矿物授予奥地利莱奥本大学的奥斯卡·塔勒哈默(Oskar Thalhammer)副教授(b.1956年生),以表彰他对PGE的矿石矿物学和矿床的贡献。该原型保存在英国伦敦自然历史博物馆地球科学系中DBIV Pekov,FD Sandalov,NN Koshlyakova,MF Vigasina,YS Pole-khovsky,SN Britvin,EG Sidorov和AG Turchkova(2018)天然氧化物尖晶石中的铜:来自俄罗斯堪察加半岛Tolbachik火山的富马ole的新矿物生热变质岩CuAl2O4,铜绿松石和富含铜的其他尖晶石族成员的变体。矿物,8(11),498. IV Pekov,FD Sandalov,NN Koshlyakova,MF Vigasina,YS Pole-khovsky,SN Britvin,EG Sidorov和AG Turchkova(2018)天然尖晶石中的铜:新型矿物热变质岩CuAl2O4,来自俄罗斯堪察加半岛Tolbachik火山的喷气孔的尖晶石族成员的铜吡咯烷酮和富含铜的变体。矿物,8(11),498.Thermaerogenite(IMA 2018-021),理想的是CuAl2O4,立方晶,是尖晶石超群的新成员(Bosi等人2019)。它是在俄罗斯远东地区堪察加半岛的托尔巴奇克火山大托尔巴奇克火山爆发北部突破的第二个火山口锥体的Arsenatnaya fumarole中发现的(55°41′N 160°14′E,1200 masl) ,它是第二个骨锥体上最热的喷气孔之一,其温度在2012–2018年间测量,根据深度的不同,温度范围为360至490°C。绿铁矿与其他尖晶石超族成员(尖晶石,针铁矿,镁铁铁矿,富兰克林石和铜松石)一起被发现,并且与辉长石,赤铁矿,正长石(含砷的品种),氟金云母,兰贝尼特,钙钙铝贝尼特,亚长辉石型硫酸盐,硬石膏,氟硼铁矿,钾锰矿,盐岩,假板钛矿,金红石,刚玉和各种砷酸盐(乌鲁石矿,软锰矿,硅铁锰矿,kozyrevskite,popovite,蓝铁矿,蓝铁矿,硅铝石,西巴比,镍锌矿,黄铜矿,硅铁矾,shrovovskyite等)。含铜尖晶石是该组合中最新的矿物之一:它们出现在空腔中,并长出了较早的氧化物(赤铁矿,钙长石)以及硅酸盐,砷酸盐和“盐”硫酸盐。绿铁矿为半透明至透明,具有淡黄色条纹和强烈的玻璃光泽。绿铁矿形成褐色,黄褐色,红褐色,棕黄色或棕红色八面体晶体,最大跨度为0.02毫米,有时为骨骼状,通常组合成最大至1毫米跨度的镂空簇。由新矿物晶体“撒布”的区域最大为0.5厘米×0.5厘米。主要形式为{111},在某些晶体上观察到狭窄的{110}面。变质铝易碎,有贝壳状骨折(在扫描电子显微镜下观察);没有观察到分裂或分离。莫氏硬度约为 7.Dcalc = 4.870g / cm 3。在反射光下,绿铁矿为灰色,光学各向同性,内部反射为淡黄色。空气中的反射率[R%(nm)](COM波长为粗体)为:16.4(400),16.0(420),15.7(440),15.4(460),15.2(470),15.1(480),14.8 (500),14.5(520),14.2(540),14.2(546),14.0(560),13.7(580),13.6(589),13.4(600),13.2(620),13.0(640),12.9 (650),12.8(660),12.5(680),12.3(700)。铝铁矿的拉曼光谱包含四个不同的带(cm-1,s =强):762s(A1g模式,O-Al在四面体配位中的拉伸振动),590 [F2g(2)或F2g(3)模式,涉及二价阳离子,(Cu,Zn)–O],284 [F2g(1)模式]和125s(晶格模式)。4个WDS电子探针分析的平均值[wt%,(范围)]为:CuO 25.01(23.64–26.86),ZnO 17.45(14.46–18.71),Al2O3 39.43(34.59–45.43),Cr2O3 0.27(0.17–0.33), Fe2O3 17.96(11.47-22.21),总计100.12。基于4 O pfu的经验公式为(Cu0.62Zn0.42)Σ1.04(Al1.52Fe0.443 + Cr0.01)Σ1.97O4⁠。最强的X射线粉末衍射线为[dÅ(I%; hkl)]:2.873(65; 220),2.451(100; 311),2.033(10; 400),1.660(16; 422),1.565( 28; 511)和1.438(30;​​ 440)。从粉末数据精炼得到的晶胞参数为a = 8.131(1)Å,V = 537.6Å3,Z =8。从单晶精炼的绿铁矿的立方晶胞参数为a = 8.093(9)Å ,V =530.1Å3,空间群Fd3m;由于所有测试晶体的不完善导致单晶衍射图样质量低,因此未研究新矿物的晶体结构。绿铁矿与针铁矿形成连续的同晶系列,在Tolbachik的Arsenatnaya fumarole与迄今描述的成分为(Cu0.83Zn0.10Mg0.04Ni0.02)Σ1.00(Fe1.733 + Al0)的铜含量最高的天然尖晶石型氧化物有关.22Mn0.053 + Ti0.01)Σ2.01O4⁠。矿物名称热生岩是根据希腊语θερμός,“热”,αέριον,“ gas”,γενής的组合构造而成的,意思是“天生”。因此,从整体上讲,它是指由热气所生,反映了矿物的富马酸来源。绿铁矿的类型标本存放在俄罗斯莫斯科俄罗斯科学院的费斯曼矿物学博物馆。FCC Biagioni,M.Pasero和F. Zaccarini(2018)提比里奥巴第石,Cu9Al(SiO3 OH)2(OH)12(H2O)6(SO4)1.5·10H2O,一种新的与黄铜矿晶石相关的矿物,来自Cretaio Cu勘探区,Massato,Masseto(意大利托斯卡纳)和晶体结构。矿物,8(4),152.C. Biagioni,M.Pasero和F.Zaccarini(2018)泰伯iobardiite,Cu9Al(SiO3 OH)2(OH)12(H2O)6(SO4)1.5·10H2O,一种新的矿物,与来自Cretaio Cu矿区的黄铜矿石有关,马萨马里蒂玛(Massa Marittima) ,格罗塞托(意大利托斯卡纳):发生和晶体结构。矿物,8(4),152.斜方晶铁矿(IMA 2016-96),理想的是三角形的Cu9Al(SiO3OH)2(OH)12(H2O)6(SO4)1.5·10H2O,是在Cretaio Cu矿床中发现的一种新矿物。 ,马萨马里蒂玛(Massa Marittima),格罗塞托(Grosseto),托斯卡纳,意大利。矿床中含有少量的硫化铜(斑铜矿,辉绿岩和玄武岩)和赤铁矿,散布为高度变形的辉长岩中的细纹。初级硫化物被强烈地改变为钙铁矿,青铜矿,黄铜矿,黄铜矿,硬铝矿,孔雀石,蓝铁矿,锂铁锰矿,孔雀石,posnjakite,蛇绿石/魔鬼石和Spagolite。在氧化和含水的低T环境中,发现钛铁钡长晶石与铜铁矿有关,是铜矿石矿物的超基因改变。泰伯iobardiite是薄的,呈片状的{001}晶体,尺寸高达200×5 µm,具有准六边形轮廓。矿物是绿色的,带有淡绿色的条纹。它是透明的,具有玻璃光泽。泰伯iobardiite易碎,具有完美的{001}分裂和不规则断裂。没有测量硬度和密度以及光学性能。Dcalc = 2.528 g / cm3; ncalc = 1.568。拉曼光谱显示在300–1200范围(cm–1)处有明显的峰值:在124、203,和261(可能是晶格模式);在394、440、487、544和589 {{SiO3(OH)]和(SO4)基的弯曲模式}下;在965([SiO3(OH)]和(SO4)基团)和1097处弱[可能是(SO4)反对称拉伸];观察到一个强而宽的频带,可以解卷积为3218、3418和3555频带(O–H拉伸振动)。5个WDS电子探针分析的平均值[wt%,(范围)]为:SO3 10.37(9.67-10.94),P2O5 3.41(3.02-3.80),As2O5 0.05(0.00-0.17),SiO2 8.13(7.29-9.03), Al2O3 5.54(4.93-6.47),Fe2O3 0.74(0.61-0.83),CuO 62.05(57.44-65.20),ZnO 0.03(0-0.10),总计90.32。基于42 O pfu的经验公式为(Cu8.692 + Al0.21Fe0.103 +)Σ9.00Al1.00(Si1.51P0.54)Σ2.05S1.44O12.53(OH)13.47⋅16H2O⁠。最强的X射线Gandolfi相机衍射线为[dÅ(相对视觉强度; s =强; m =中等; mw =中等弱;w =弱;vw =非常弱;hkl)]:9.4(s; 003),4.67(s; 006、113、113),2.576(m; 223、223),2.330(m; 226、226)和2.041(mw; 229、229)。从在0.180×0.050×0.005 mm晶体上收集的单晶衍射数据获得的晶胞参数为a = 10.6860(4),c = 28.3239(10)Å,V = 2801.0Å3,三角形,R3,Z = 3。当Fo>4σ(Fo)时,在1747年反射时,晶体结构细化为R = 6.02%,在2809次反射时,Rall = 7.99%。斜方晶铁矿的晶体结构由五个独立的阳离子位置(Cu1,Cu2,Al,Si和S)和不对称单元中的九个阴离子位点组成。它可以描述为由{001}杂多面层形成,该杂多面层由Cuφ6多面体(φ= O,OH,H2O),Al(OH)6八面体和(Si,P)O3(OH,O)四面体组成,托管(SO4)和H2O组的中间层。以Si为中心的四面体(由Si和P占据)交替放置在薄板的上方和下方,该薄板具有简化的化学组成{Cu9Al [(Si0.75P0.25)O3(OH0.75O0.25)] 2(OH) 12(H2O)6} 3+。两个独立的Cu位点(Cu1和Cu2)显示六重配位,显示出与Cu2 +的Jahn-Teller效应有关的典型的扭曲(4 + 2)八面体配位。与叶蜡石[Cu9Al(AsO4)2(OH)12(H2O)6(SO4)1.5·10H2O]一起使用。这些物质与重晶石{Cu9Al [SiO3(OH)] 2(OH)12(H2O)6} {(SO4)[AsO3(OH)] 0.5}·2H2O有关,但未解析重晶石的晶体结构,与黄铜矿族矿物的实际关系尚不清楚。该矿物以纪念矿物收藏家Tiberio Bardi(b.1960)的名字命名,以表彰他对托斯卡纳矿物学的研究。整型标本存放在意大利Calci(Pisa)比萨大学的自然博物馆中。FCTBalić-Žunić,A.Garavelli,D.Pinto和D.Mitolo(2018年)凡尔纳岩,Na2Ca3Al2F14,一种来自冰岛和维苏威火山的新型氟化铝矿物。矿物,8(12),553.T. Balić-Žunić,A.Garavelli,D.Pinto和D.Mitolo(2018年)凡尔纳岩,Na2Ca3Al2F14,一种来自冰岛和维苏威火山的新型氟化铝矿物。矿物,8(12),553.黑云母(IMA 2016-112),理想的是Na2Ca3Al2F14,立方,是在冰岛和样本中的Eldfell(1988)和Hekla(1992)火山收集的富马酸升华物中发现的一种新矿物。来自意大利维苏威火山的火山,收集于1925年,并在巴里大学地球科学博物馆中被分类为“ avogadrite或malladrite”。”该矿物还于2010年喷发后在冰岛Fimmvörduhals的喷气孔中发现。黑云母存在于中低温喷气孔(采样时为170°C)中,为黄白色至棕色结壳和块状团聚体大小可达几毫米,有时甚至是透明,无色至浅黄色晶体。在赫克拉(Hekla)中,黑云石与水钠钙石和赤铁矿,雅各布松石和不明的“矿物质HB”混合存在。其他相关的矿物是软锰矿,方铁矿,辉石,蛋白石和萤石。在Eldfell中,白云石形式的20微米以下的{110}晶体与jakobssonite,“矿物质HB”,硬石膏,软白榴石,堇青石,黄钾铁矾和meniaylovite有关。在维苏威试样中,由{100},{110}和{111}的组合形成的最大10 µm的晶体与硅藻土,堇青石,克诺贝石,哑光,青铜矿和绿宝石。在研究的样品上未观察到紫外线的荧光。由于晶体尺寸和掺混物小,未确定其他物理性质;Dcalc = 2.974 g / cm3,ncalc = 1.357。通过SEM-EDS对溅射在碳膜上的颗粒的化学组成进行了分析。没有重量百分比数据。基于7个阳离子pfu的经验公式为Na2.01Ca2.82Al2.17F14.02(Eldfell)/(Na1.47K0.09)Σ1.56Ca3.25Al2.19F14.33(Vesuvius)。[由这些式衍生的wt%分别是:Na 9.54 / 6.77,K 0 / 0.71,Ca 23.35 / 26.11,Al 12.09 / 11.84,F 55.02 / 54.57]。粉末XRD数据是从Hekla的样品中获得的,该样品包含黑云母,菱镁石,赤铁矿,雅各布松石和少量的“矿物质HB”。”分配给黑云母的粉末XRD谱图的主线是[dÅ(I%; hkl)]:7.24(17; 011),5.11(17; 002),4.18(76; 211),3.62(55; 022) ,3.23(68; 031),2.95(100; 222),2.73(38; 321),2.414(40; 411),2.288(40; 402); 2.184(78; 332),2.009(98; 341,431),1.871(75; 251),1.811(84; 044),1.663(66; 611,532,352); 1.582(28; 451),1.545(46; 622),1.512(31; 361)。Rietveld精炼证实黑云母是立方的,空间群I213,a = 10.264(1)Å,V = 1081.4Å3,Z =4。其合成类似物的晶体结构描述为(Courbion and Ferrey 1988)的三维网络通过插入的[AlF6] 3-八面体的Ca2 +离子连接的[FCa3Na] 6+四面体和与三个Ca2 +和一个Na +离子连接的独立氟化物F3离子。根据这些数据,可以从另一个角度了解晶体结构,考虑到阳离子配位是作为CaF8配位双双蝶形弯曲链的三维网格,与NaF7封端的八面体的类似弯曲链交织在一起,形成平行于{100}的三个等效晶体学平面的相交层,其中嵌入了AlF6八面体它的混乱。讨论了氟化物中Ca配位的特征,以及它们与其他三元Na-Ca-Al氟化物的关系。凡尔纳人以法国著名科幻小说家朱尔斯·凡尔纳(Jules Verne,1828-1905年)的名字命名,以促进科学发展。他的小说《旅行者之谷》(Voyage au center de la Terre)(1864年)描述了穿越地球地下的旅程,此旅程始于冰岛火山Snæfell的火山口,最后因旅行者在意大利南部的斯特龙博利火山喷发而被逐出。完整型和共型保存在冰岛加尔加卜尔的冰岛自然历史研究所。维苏威火山的样本在意大利巴里大学地球与地球环境科学系的收藏中。D B
更新日期:2020-08-20
down
wechat
bug