当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-08-20 , DOI: 10.1039/d0ta07068h
Jia-Kang Tang 1, 2, 3, 4 , Chen-Yuan Zhu 1, 2, 3, 4 , Tian-Wen Jiang 1, 2, 3, 4 , Lei Wei 3, 4, 5, 6 , Hui Wang 1, 2, 3, 4 , Ke Yu 1, 4, 7, 8 , Chun-Lei Yang 1, 2, 3, 4 , Yue-Biao Zhang 3, 4, 5, 6 , Chen Chen 1, 4, 7, 8 , Zhan-Ting Li 1, 2, 3, 4 , Dan-Wei Zhang 1, 2, 3, 4 , Li-Ming Zhang 1, 2, 3, 4
Affiliation  

Aqueous electrochemical conversion of CO2 with renewable energy is a sustainable pathway to produce carbon-neutral fuels and address the growing crisis of global warming. A key challenge in the field of electrochemical CO2 reduction (CO2R) is the design of catalytic materials featuring high product selectivity, stability, and a composition of earth-abundant elements. In this work, we demonstrate anion exchange as a promising strategy to achieve synergistic catalysis via secondary coordination sphere interactions between the catalyst and the support. We encapsulate an anionic cobalt porphyrin-based electrocatalyst, with a single-molecule dispersion, into a cationic porous polymer skeleton, and construct a class of electrocatalysts to convert CO2 to CO with remarkable activity, selectivity and durability. Detailed examination of CO2R revealed selectivity for CO production in excess of 83% and stability over 7 hours with a per-site turnover frequency of 1.4 s−1. In situ spectroelectrochemical measurements using surface-enhanced infrared absorption spectroscopy (SEIRAS) provided insights into the capability of the cationic polymer framework to control the interactions of intermediates with groups in close proximity via modifying the secondary coordination sphere interactions around the active sites. Our findings highlight the importance of a rationally designed electrocatalyst/solid support interface and offer a paradigm to integrate catalytically active components and develop efficient electrocatalytic systems via marrying the catalyst and support, and creating synergy.

中文翻译:

阴离子交换诱导的卟啉在阳离子多孔有机聚合物中的单分子分散,通过次级配位球相互作用增强了电化学二氧化碳的还原

用可再生能源对CO 2进行电化学水转换是生产碳中和燃料并解决日益严重的全球变暖危机的可持续途径。电化学还原CO 2(CO 2 R)领域中的关键挑战是设计具有高产品选择性,稳定性和富含稀土元素的催化材料。在这项工作中,我们证明了阴离子交换是一种有前途的策略,可通过以下途径实现协同催化作用催化剂和载体之间的二级配位球相互作用。我们将具有单分子分散体的阴离子钴卟啉基电催化剂封装到阳离子多孔聚合物骨架中,并构建了一类电催化剂,以优异的活性,选择性和耐久性将CO 2转化为CO。对CO 2 R的详细检查显示,CO生成的选择性超过83%,并且在7小时内具有稳定性,每个站点的周转频率为1.4 s -1原位使用表面增强红外吸收光谱(SEIRAS)进行的光谱电化学测量提供了对阳离子聚合物框架通过修饰活性部位周围的二级配位球相互作用来控制中间体与基团之间相互作用的控制能力的见解。我们的发现突出了合理设计电催化剂/固体载体界面的重要性,并提供了一种将催化活性组分整合并通过将催化剂和载体结合并产生协同作用来开发高效电催化体系的范例。
更新日期:2020-09-22
down
wechat
bug