Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of multiple scan fields on the processing of 316L stainless steel using laser powder bed fusion
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ( IF 2.5 ) Pub Date : 2020-08-19 , DOI: 10.1177/1464420720948541
TC Leça 1 , TEF Silva 1, 2 , AMP de Jesus 1, 2 , Rui L Neto 1, 2 , Jorge L Alves 1, 2 , JP Pereira 2
Affiliation  

The sharp growth that additive manufacturing has been showing recently has broadened its application field and resulted in more varied demand of high-volume parts as well as a general increase in part series. The current focus on productivity enhancement of additive manufacturing has imposed the implementation of multiple-laser systems with larger scan fields. Its usage, combined with adequate layer thickness and laser power selection, makes high-volume parts less challenging to obtain. This paper focuses on understanding the influence of using multiple-scan fields for the fabrication of large components, especially on the parts region corresponding to scan field interface. The microstructure as well as mechanical behaviour of the multi-field manufactured samples are compared with parts fabricated using a single-field, for distinct processing parameters. Moreover, given the unreliability of additive manufacturing regarding dimensional and geometrical tolerances with increasing build rates, post-processing metal-cutting operations were studied towards additive manufacturing process hybridization. Despite the typical additive manufacturing process variability, a set of parameters, within testing conditions, could be identified as the most appropriate solution towards mechanical strength enhancement. Nonetheless, porosity levels can significantly impact the ductility of parts, which may be additionally compromised by its occurrence in the scan-field interface region.

中文翻译:

多扫描场对激光粉末床融合加工316L不锈钢的影响

增材制造最近显示出的急剧增长拓宽了其应用领域,导致对大批量零件的需求更加多样化,零件系列也普遍增加。当前对增材制造生产率提高的关注已经强制实施具有更大扫描场的多激光系统。它的使用,结合足够的层厚度和激光功率选择,使得获得大批量零件的难度降低。本文重点了解使用多扫描场制造大型部件的影响,特别是对扫描场界面对应的零件区域的影响。将多场制造样品的微观结构和机械性能与使用单场制造的零件进行比较,用于不同的加工参数。此外,考虑到增材制造在尺寸和几何公差方面的不可靠性随着构建速率的增加,后处理金属切削操作被研究以实现增材制造工艺的混合。尽管典型的增材制造工艺存在可变性,但在测试条件下,一组参数可以被确定为提高机械强度的最合适的解决方案。尽管如此,孔隙率水平会显着影响零件的延展性,这可能会因它出现在扫描场界面区域而受到额外的损害。对后处理金属切削操作进行了研究,以实现增材制造工艺的混合。尽管典型的增材制造工艺存在可变性,但在测试条件下,一组参数可以被确定为提高机械强度的最合适的解决方案。尽管如此,孔隙率水平会显着影响零件的延展性,这可能会因它出现在扫描场界面区域而受到额外影响。对后处理金属切削操作进行了研究,以实现增材制造工艺的混合。尽管典型的增材制造工艺存在可变性,但在测试条件下,一组参数可以被确定为提高机械强度的最合适的解决方案。尽管如此,孔隙率水平会显着影响零件的延展性,这可能会因它出现在扫描场界面区域而受到额外的损害。
更新日期:2020-08-19
down
wechat
bug