当前位置: X-MOL 学术Solid Earth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combined numerical and experimental study of microstructure and permeability in porous granular media
Solid Earth ( IF 3.2 ) Pub Date : 2020-06-25 , DOI: 10.5194/se-11-1079-2020
Philipp Eichheimer , Marcel Thielmann , Wakana Fujita , Gregor J. Golabek , Michihiko Nakamura , Satoshi Okumura , Takayuki Nakatani , Maximilian O. Kottwitz

Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities and measure the permeability experimentally. The microstructure, namely effective porosity and effective specific surface, is investigated using image processing. We determine flow properties like tortuosity and permeability using numerical simulations. We test different parameterizations for isotropic low-porosity media on their potential to predict permeability by comparing their estimations to computed and experimentally measured values.

中文翻译:

多孔颗粒介质微观结构和渗透率的数值与实验相结合的研究

地球物理,水文地质学和火山学等多个地球科学学科都关注不同尺度的流体流动。为了在大规模数值模拟(例如地下水和火山系统)中参数化流体流动,需要考虑微观尺度上的流动特性。为此目的,需要在广泛的孔隙率下对通过多孔介质的流动进行实验和数值研究。在本研究中,我们烧结具有各种孔隙率的玻璃珠介质,并通过实验测量渗透率。使用图像处理研究了微观结构,即有效孔隙率和有效比表面积。我们使用数值模拟来确定诸如曲折度和渗透率的流动特性。
更新日期:2020-08-20
down
wechat
bug