当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Miscibility-Controlled Phase Separation in Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiencies over 8 .
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-08-20 , DOI: 10.1002/anie.202009272
Xudong Jiang 1, 2 , Jinjin Yang 3 , Safakath Karuthedath 4 , Junyu Li 2 , Wenbin Lai 2 , Cheng Li 2 , Chengyi Xiao 1 , Long Ye 5 , Zaifei Ma 3 , Zheng Tang 3 , Frédéric Laquai 4 , Weiwei Li 1, 2, 6
Affiliation  

A record power conversion efficiency of 8.40 % was obtained in single‐component organic solar cells (SCOSCs) based on double‐cable conjugated polymers. This is realized based on exciton separation playing the same role as charge transport in SCOSCs. Two double‐cable conjugated polymers were designed with almost identical conjugated backbones and electron‐withdrawing side units, but extra Cl atoms had different positions on the conjugated backbones. When Cl atoms were positioned at the main chains, the polymer formed the twist backbones, enabling better miscibility with the naphthalene diimide side units. This improves the interface contact between conjugated backbones and side units, resulting in efficient conversion of excitons into free charges. These findings reveal the importance of charge generation process in SCOSCs and suggest a strategy to improve this process: controlling miscibility between conjugated backbones and aromatic side units in double‐cable conjugated polymers.

中文翻译:

用于双组分共轭聚合物的单相有机太阳能电池的混相控制相分离,效率超过8。

在基于双电缆共轭聚合物的单组分有机太阳能电池(SCOSC)中,功率转换效率达到了创纪录的8.40%。这是基于激子分离而实现的,激子分离与SCOSC中的电荷传输起着相同的作用。设计了两种双电缆共轭聚合物,它们具有几乎相同的共轭主链和吸电子侧链单元,但多余的Cl原子在共轭主链上的位置不同。当Cl原子位于主链上时,聚合物形成扭曲主链,从而可以与萘二酰亚胺侧链更好地混溶。这改善了共轭骨架和侧链单元之间的界面接触,从而将激子有效地转化为自由电荷。
更新日期:2020-08-20
down
wechat
bug