当前位置: X-MOL 学术Mar. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A simplified method to efficiently design steel fenders subjected to vessel head-on collisions
Marine Structures ( IF 4.0 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.marstruc.2020.102840
Wei Fan , Zewen Zhang , Xu Huang , Wenbiao Sun

Abstract Steel fenders have been widely used to protect bridges from vessel collisions because of their relatively large plastic deformability and energy dissipation capacity. In the design of a steel fender, detailed finite element (FE) models are usually employed. However, detailed FE analysis involves complicated modeling and substantial computation time. This method is often not applicable, particularly during preliminary design iterations. For this reason, a simplified analytical method was developed in this paper with the aim to efficiently design steel fenders under vessel collisions. For primary individual members of steel fenders, the deformation mechanisms and models as well as participations during various collision scenarios were discussed in detail. By combining the contributions of primary members, a general analytical procedure was presented to rapidly estimate the force-deformation relationship of steel fenders under various bow impacts. For the fixed and floating steel fenders, several collision scenarios were simulated by FE models to verify the accuracy of the developed analytical method. The crushing resistances and energy dissipation capacities estimated by the developed analytical method were in good agreement with those obtained from the FE simulations. Based on the analytical method, an energy-based design approach was proposed for the efficient design of steel fenders. The developed design approach was demonstrated to be capable of predicting the crush depth and peak impact force of a steel fender with good accuracy.

中文翻译:

一种有效设计遭受船舶正面碰撞的钢护舷的简化方法

摘要 钢护舷由于具有较大的塑性变形能力和能量耗散能力,被广泛用于保护桥梁免受船舶碰撞。在钢护舷的设计中,通常采用详细的有限元 (FE) 模型。然而,详细的有限元分析涉及复杂的建模和大量的计算时间。这种方法通常不适用,特别是在初步设计迭代期间。出于这个原因,本文开发了一种简化的分析方法,旨在有效地设计船舶碰撞下的钢护舷。对于钢护舷的主要个体成员,详细讨论了变形机制和模型以及在各种碰撞场景中的参与。通过结合主要成员的贡献,提出了一种通用分析程序,以快速估计钢护舷在各种船首冲击下的力-变形关系。对于固定式和浮动式钢护舷,通过有限元模型模拟了几种碰撞场景,以验证所开发分析方法的准确性。通过开发的分析方法估计的抗压强度和能量耗散能力与从有限元模拟中获得的结果非常一致。基于分析方法,提出了一种基于能量的设计方法,用于钢护舷的高效设计。开发的设计方法被证明能够以良好的精度预测钢护舷的挤压深度和峰值冲击力。对于固定式和浮动式钢护舷,通过有限元模型模拟了几种碰撞场景,以验证所开发分析方法的准确性。通过开发的分析方法估计的抗压强度和能量耗散能力与从有限元模拟中获得的结果非常一致。基于分析方法,提出了一种基于能量的设计方法,用于钢护舷的高效设计。开发的设计方法被证明能够以良好的精度预测钢护舷的挤压深度和峰值冲击力。对于固定式和浮动式钢护舷,通过有限元模型模拟了几种碰撞场景,以验证所开发分析方法的准确性。通过开发的分析方法估计的抗压强度和能量耗散能力与从有限元模拟中获得的结果非常一致。基于分析方法,提出了一种基于能量的设计方法,用于钢护舷的高效设计。开发的设计方法被证明能够以良好的精度预测钢护舷的挤压深度和峰值冲击力。通过开发的分析方法估计的抗压强度和能量耗散能力与从有限元模拟中获得的结果非常一致。基于分析方法,提出了一种基于能量的设计方法,用于钢护舷的高效设计。开发的设计方法被证明能够以良好的精度预测钢护舷的挤压深度和峰值冲击力。通过开发的分析方法估计的抗压强度和能量耗散能力与从有限元模拟中获得的结果非常一致。基于分析方法,提出了一种基于能量的设计方法,用于钢护舷的高效设计。开发的设计方法被证明能够以良好的精度预测钢护舷的挤压深度和峰值冲击力。
更新日期:2020-11-01
down
wechat
bug