当前位置: X-MOL 学术Fungal Biol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model
Fungal Biology Reviews ( IF 5.7 ) Pub Date : 2020-08-18 , DOI: 10.1016/j.fbr.2020.07.001
David E. Torres , Ursula Oggenfuss , Daniel Croll , Michael F. Seidl

The interaction of pathogens with their hosts creates strong reciprocal selection pressures. Pathogens often deploy an arsenal of small proteins called effectors that manipulate the plant immune system and promote disease. In the post-genomics era, a major interest has been to understand what shapes the localization of effector genes in pathogen genomes. The two-speed genome model originated with the discovery of repeat-rich and gene-sparse genome compartments with an over-representation of effector-like genes in a subset of plant pathogens. These highly polymorphic genome compartments are thought to create unique niches for effector genes and facilitate rapid adaptation. Research over the past decade has revealed a number of twists to the two-speed genome model and raised questions about the universality among plant pathogens. Here, we critically review the foundations of the two-speed model by presenting recent work on epigenetics, transposable element dynamics, and population genetics. Numerous examples have demonstrated that the location of effector genes in rapidly evolving compartments has created key adaptations. However, recent evidence suggests that the two-speed genome is unlikely to have evolved to specifically benefit the plant pathogen lifestyle. We propose that fundamental drivers of eukaryotic genome evolution have shaped both pathogen and non-pathogen genomes alike. An evolutionary genomics perspective on the two-speed genome model will open up fruitful new research avenues.



中文翻译:

真菌植物病原体的基因组进化:超越二速基因组模型

病原体与其宿主之间的相互作用会产生强大的相互选择压力。病原体经常部署称为效应子的小蛋白库,这些蛋白操纵植物的免疫系统并促进疾病。在后基因组学时代,人们的主要兴趣是了解什么塑造了病原体基因组中效应基因的定位。两速基因组模型起源于重复富集和基因稀疏的基因组区室的发现,在植物病原体的子集中,效应子样基因的过量表达。这些高度多态的基因组区室被认为为效应子基因创造了独特的优势,并促进了快速适应。过去十年的研究表明,两速基因组模型存在许多扭曲,并引发了有关植物病原体普遍性的疑问。这里,我们通过介绍表观遗传学,转座子动力学和种群遗传学方面的最新研究,对两速模型的基础进行了批判性的综述。许多例子表明效应基因在快速进化的区室中的位置产生了关键的适应。但是,最近的证据表明,两速基因组不太可能进化为特别有利于植物病原体的生活方式。我们提出真核基因组进化的基本驱动力已经塑造了病原体和非病原体基因组。关于双速基因组模型的进化基因组学观点将开辟出富有成果的新研究途径。许多例子表明效应子基因在快速进化的区室中的位置产生了关键的适应。但是,最近的证据表明,两速基因组不太可能进化为特别有利于植物病原体的生活方式。我们提出真核基因组进化的基本驱动力已经塑造了病原体和非病原体基因组。关于双速基因组模型的进化基因组学观点将开辟出富有成果的新研究途径。许多例子表明效应子基因在快速进化的区室中的位置产生了关键的适应。但是,最近的证据表明,两速基因组不太可能进化为特别有益于植物病原体的生活方式。我们提出真核基因组进化的基本驱动力已经塑造了病原体和非病原体基因组。关于双速基因组模型的进化基因组学观点将开辟出富有成果的新研究途径。我们提出真核基因组进化的基本驱动力已经塑造了病原体和非病原体基因组。关于双速基因组模型的进化基因组学观点将开辟出富有成果的新研究途径。我们提出真核基因组进化的基本驱动力已经塑造了病原体和非病原体基因组。关于双速基因组模型的进化基因组学观点将开辟出富有成果的新研究途径。

更新日期:2020-10-07
down
wechat
bug