当前位置: X-MOL 学术Phys. Status Solidi A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and Simulation of a‐Si:H/PbS Colloidal Quantum Dots Monolithic Tandem Solar Cell for 12% Efficiency
Physica Status Solidi (A) - Applications and Materials Science Pub Date : 2020-08-18 , DOI: 10.1002/pssa.202000252
Savita Kashyap 1 , Rahul Pandey 1 , Jaya Madan 1 , Rajnish Sharma 1
Affiliation  

Tandem solar cells (TSC) is the most promising photovoltaic technology, as it efficiently overcomes the thermalization and nonabsorption losses. In this context, thin‐film/colloidal quantum dot (CQD)‐based 2‐terminal monolithic TSCs are designed using a‐Si:H of wide bandgap (1.7 eV) as the top cell and PbS CQD of narrow bandgap (1.2 eV) as the bottom cell. Initially, top and bottom subcells are designed and calibrated to have state‐of‐the‐art power conversion efficiencies (PCE) of 6.86% and 9.38%, respectively. Afterward, the thicknesses of the inverted bottom cell are optimized as 200 nm so as to obtain 8.34% efficiency. The standalone condition reflects current density (JSC)/open‐circuit voltage (VOC) of 9.97 mA cm−2 and 0.91 V in the top cell and 21.28 mA cm−2/0.63 V in the bottom cell. Further, both subcells are evaluated for tandem configuration with ITO‐based interlayer to provide the current matching conditions. In the proposed tandem design, the thickness of the absorber layers is optimized to achieve the highest JSC, which is indeed limited by the top cell, due to a lower JSC value of 10.61 mA cm−2 in standalone conditions. Optimized tandem design with 200 nm/150 nm‐thick absorber layer‐based top/bottom subcell results in JSC of 10.52 mA cm−2, VOC of 1.59 V, FF of 71.65%, and PCE of 12.02%.

中文翻译:

效率为12%的a-Si:H / PbS胶体量子点单片串联太阳能电池的设计和仿真

串联太阳能电池(TSC)是最有前途的光伏技术,因为它可以有效地克服热损失和非吸收损失。在这种情况下,使用宽带隙(1.7 eV)的a-Si:H作为顶部电池和窄带隙(1.2 eV)的PbS CQD设计基于薄膜/胶体量子点(CQD)的2端单片TSC。作为底部单元格。最初,对顶部和底部子电池进行设计和校准,使其最先进的功率转换效率(PCE)分别为6.86%和9.38%。之后,将倒置底部电池的厚度优化为200nm,从而获得8.34%的效率。独立条件反映的电流密度(J SC)/开路电压(V OC)为9.97 mA cm -2顶部电池为0.91 V,底部电池为21.28 mA cm -2 /0.63V。此外,两个子电池都通过基于ITO的中间层进行串联配置评估,以提供当前匹配条件。在所提出的串联设计中,吸收器层的厚度被优化以实现最高的J SC,这实际上受到顶部电池的限制,这是由于在独立条件下的J SC值较低,为10.61 mA cm -2。使用基于200 nm / 150 nm厚吸收层的顶部/底部子电池进行优化的串联设计,可实现J SC为10.52 mA cm -2V OC为1.59 V,FF为71.65%和PCE为12.02%。
更新日期:2020-10-22
down
wechat
bug