当前位置: X-MOL 学术J. Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lumbar axial torque actively induces trunk axial rotation during sidestep cutting manoeuvre: Insight to expand the trunk control concept.
Journal of Biomechanics ( IF 2.4 ) Pub Date : 2020-08-18 , DOI: 10.1016/j.jbiomech.2020.110003
Natsuki Sado 1 , Shinsuke Yoshioka 2 , Senshi Fukashiro 3
Affiliation  

Core stability is widely recognised as ‘the body’s ability to maintain or resume an equilibrium position of the trunk after perturbation’. As such, large excursions of the trunk during controlled activities are believed to be the result of poor trunk control. Here, we show that the axial torque actively induces the trunk axial rotation (the thoracic rotation relative to the pelvis) rather than minimise the axial rotation during sidestep cutting. We analysed the kinematic and kinetic data of 90° sidestep cutting with maximal effort by 10 physically active men. The thorax rotated toward the objective direction prior to the pelvis, resulting in the trunk axial rotation with the peak angle of 21.0 ± 6.0°. Lumbosacral axial torque was exerted toward the objective direction during the early stance phase, and it was then exerted inversely during the late stance and flight phases, which was consistent with the increase/decrease in the trunk axial rotation velocity. In the early stance phase, the absolute integrated component of the lumbosacral axial torque for pelvic rotation (0.074 ± 0.033 Nms/kg) was significantly larger than any other integrated component. In the late stance and flight phases, the lumbosacral axial torque mainly rotated the pelvis. The results indicate that the axial torque is exerted to actively induce the trunk axial rotation rather than minimise the trunk movement, suggesting that the trunk control concept probably should include not only stabilising but also actively moving the trunk.



中文翻译:

腰椎轴向扭矩在步伐切割操作中主动引起躯干轴向旋转:洞察力扩展了躯干控制概念。

核心稳定性被广泛认为是“身体在摄动后维持或恢复躯干平衡位置的能力”。这样,在受控活动期间躯干的较大偏移被认为是躯干控制不良的结果。在这里,我们显示轴向扭矩有效地引起躯干轴向旋转(相对于骨盆的胸廓旋转),而不是在进行阶梯切割时使轴向旋转最小化。我们分析了10名身体活跃的男性在最大努力下进行90°侧切的运动学和动力学数据。胸部在骨盆之前朝目标方向旋转,导致躯干轴向旋转,其峰值角度为21.0±6.0°。站立初期,腰ac轴向扭矩朝目标方向施加,然后在后期姿态和飞行阶段反作用,这与躯干轴向旋转速度的增加/减少一致。在早期站立阶段,骨盆旋转腰s部轴向扭矩的绝对积分分量(0.074±0.033 Nms / kg)显着大于任何其他积分分量。在后期站立和飞行阶段,腰s部轴向扭矩主要旋转骨盆。结果表明,施加轴向扭矩是为了主动引起躯干轴向旋转,而不是使躯干运动最小化,这表明躯干控制概念可能不仅应包括稳定躯体,而且还应主动运动躯干。骨盆旋转腰s部轴向扭矩的绝对积分分量(0.074±0.033 Nms / kg)明显大于任何其他积分分量。在后期站立和飞行阶段,腰s部轴向扭矩主要旋转骨盆。结果表明,施加轴向扭矩是为了主动引起躯干轴向旋转,而不是使躯干运动最小化,这表明躯干控制概念可能不仅应包括稳定躯体,而且还应主动运动躯干。骨盆旋转腰s部轴向扭矩的绝对积分分量(0.074±0.033 Nms / kg)明显大于任何其他积分分量。在后期站立和飞行阶段,腰s部轴向扭矩主要旋转骨盆。结果表明,施加轴向扭矩是为了主动引起躯干轴向旋转,而不是使躯干运动最小化,这表明躯干控制概念可能不仅应包括稳定躯体,而且还应主动运动躯干。

更新日期:2020-08-28
down
wechat
bug