当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional phase field sintering simulations accounting for the rigid-body motion of individual grains
Computational Materials Science ( IF 3.1 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.commatsci.2020.109963
Robert Termuhlen , Xanthippi Chatzistavrou , Jason D. Nicholas , Hui-Chia Yu

Abstract Sintering is a widely used powder processing technique in industrial applications. During sintering, atoms migrate to decrease the energy of the system via two main mechanisms: coarsening and densification, both of which lead to significant morphological variation of the sintered microstructure. When simulating sintering dynamics, the phase-field method has been broadly utilized because of its convenience in tracking morphology evolution. When a large number of grains is involved, it is common to use the same order parameter to describe multiple grains that are not in direct contact with one another (in order to reduce the computational memory demands). However, with this treatment it is difficult to handle the rigid-body motion of individual grains during densification. In this work, an implementation scheme is introduced to overcome the challenge of calculating individual particle motion based on existing equations. It uses a grouping algorithm and sets a cutoff radius on each grain for calculating the particle velocity during densification. This method allows for the incorporation of the densification mechanism, which has been commonly ignored in previous work, into phase-field sintering models in three-dimensional simulations with a large number of particles/grains. Moreover, through combination with the smoothed boundary method, material properties of sintered microstructures, such as the effective diffusivity and Young’s modulus, can be calculated during the sintering processes.

中文翻译:

考虑单个晶粒刚体运动的三维相场烧结模拟

摘要 烧结是工业应用中广泛使用的粉末加工技术。在烧结过程中,原子迁移以通过两种主要机制降低系统能量:粗化和致密化,这两种机制都会导致烧结微观结构的显着形态变化。在模拟烧结动力学时,相场法因其在跟踪形态演化方面的便利性而被广泛使用。当涉及大量颗粒时,通常使用相同的顺序参数来描述彼此不直接接触的多个颗粒(以减少计算内存需求)。然而,采用这种处理方法很难处理致密化过程中单个颗粒的刚体运动。在这项工作中,引入了一种实现方案来克服基于现有方程计算单个粒子运动的挑战。它使用分组算法并在每个颗粒上设置截止半径,用于计算致密化过程中的粒子速度。这种方法允许将在以前的工作中通常被忽略的致密化机制结合到具有大量颗粒/晶粒的三维模拟中的相场烧结模型中。此外,通过结合平滑边界方法,可以计算烧结过程中烧结微结构的材料特性,如有效扩散率和杨氏模量。它使用分组算法并在每个颗粒上设置截止半径,用于计算致密化过程中的粒子速度。这种方法允许将在以前的工作中通常被忽略的致密化机制结合到具有大量颗粒/晶粒的三维模拟中的相场烧结模型中。此外,通过结合平滑边界方法,可以计算烧结过程中烧结微结构的材料特性,如有效扩散率和杨氏模量。它使用分组算法并在每个颗粒上设置截止半径,用于计算致密化过程中的粒子速度。这种方法允许将在以前的工作中通常被忽略的致密化机制结合到具有大量颗粒/晶粒的三维模拟中的相场烧结模型中。此外,通过结合平滑边界方法,可以计算烧结过程中烧结微结构的材料特性,如有效扩散率和杨氏模量。进入具有大量颗粒/晶粒的三维模拟中的相场烧结模型。此外,通过结合平滑边界方法,可以计算烧结过程中烧结微结构的材料特性,如有效扩散率和杨氏模量。进入具有大量颗粒/晶粒的三维模拟中的相场烧结模型。此外,通过结合平滑边界方法,可以计算烧结过程中烧结微结构的材料特性,如有效扩散率和杨氏模量。
更新日期:2021-01-01
down
wechat
bug