当前位置: X-MOL 学术Struct. Control Health Monit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling uncertain nonlinear structural vibrations of moving continuum system by embedding a vibration monitoring unit to feedback algorithm
Structural Control and Health Monitoring ( IF 4.6 ) Pub Date : 2020-08-17 , DOI: 10.1002/stc.2626
Mohammad Reza Homaeinezhad 1 , Farhad FotoohiNia 1 , Hesam Mohammad Gholyan 1
Affiliation  

This paper proposes a practical solution to control a problem of a class of continuum mechanics systems in which spatial equations corresponding to vibrational motions are not resolvable through conventional analytical approaches. Control scheme is constructed based on discrete sliding mode technique regarding a rigid model of a system such that control inputs are selected between Lyapunov stability bounds to manipulate the system in tracking reference values. The stability bounds and control input signal proximity to either bounds are updated in every simulation step in accordance to system vibration level using a practical acceleration synchronization method aside from evolution of rigid model states. To this end, the severity of vibrations is analyzed online using a limited number of acceleration sensors. These sensors are installed on critical nodes that are generally characterized with high level of vibrations, and the synchronization process is employed through comparative analysis with other nodes of which exhibit more rigidity within the structure. In order to highlight controller performance, virtual plant is assumed to be constructed from viscoelastic materials (VEMs) featuring time‐varying elasticity and viscosity, and Prony series parameters are involved in modeling VEMs in ANSYS® mechanical APDL student edition. Eventually, controller capability in stabilization of closed‐loop system and tracking reference values are evaluated in finite element analysis transient environment, and simulation results are compared with those of existing methods.

中文翻译:

通过将振动监测单元嵌入反馈算法来控制运动连续体系统的不确定非线性结构振动

本文提出了一种实用的解决方案,用于控制一类连续力学系统的问题,在该系统中,与振动运动相对应的空间方程无法通过常规分析方法求解。基于与系统的刚性模型有关的离散滑模技术构建控制方案,以便在Lyapunov稳定性边界之间选择控制输入以操纵系统以跟踪参考值。除了刚性模型状态的演化之外,还使用实用的加速同步方法,根据每个系统的振动水平,在每个模拟步骤中更新稳定性边界和控制输入信号接近于任一边界。为此,使用数量有限的加速度传感器在线分析振动的严重程度。这些传感器安装在通常具有高振动水平的关键节点上,并且通过与其他节点进行比较分析来采用同步过程,这些节点的其他节点在结构内显示出更高的刚性。为了突出控制器的性能,假定虚拟工厂由具有随时间变化的弹性和粘度的粘弹性材料(VEM)构成,并且Prony系列参数涉及ANSYS®Mechanical APDL学生版中的VEM建模。最终,在有限元分析瞬态环境中评估了控制器在闭环系统稳定和跟踪参考值方面的能力,并将仿真结果与现有方法进行了比较。通过与其他节点的比较分析来采用同步过程,这些节点的其他节点在结构内表现出更高的刚性。为了突出控制器的性能,假定虚拟工厂由具有随时间变化的弹性和粘度的粘弹性材料(VEM)构成,并且Prony系列参数涉及ANSYS®Mechanical APDL学生版中的VEM建模。最终,在有限元分析瞬态环境中评估了控制器在闭环系统稳定和跟踪参考值方面的能力,并将仿真结果与现有方法进行了比较。通过与其他节点的比较分析来采用同步过程,这些节点的其他节点在结构内表现出更高的刚性。为了突出控制器的性能,假定虚拟工厂由具有随时间变化的弹性和粘度的粘弹性材料(VEM)构成,并且Prony系列参数涉及ANSYS®Mechanical APDL学生版中的VEM建模。最终,在有限元分析瞬态环境中评估了控制器在闭环系统稳定和跟踪参考值方面的能力,并将仿真结果与现有方法进行了比较。假定虚拟工厂是由具有随时间变化的弹性和粘度的粘弹性材料(VEM)构成的,并且Prony系列参数涉及ANSYS®机械APDL学生版中的VEM建模。最终,在有限元分析瞬态环境中评估了控制器在闭环系统稳定和跟踪参考值方面的能力,并将仿真结果与现有方法进行了比较。假定虚拟工厂是由具有随时间变化的弹性和粘度的粘弹性材料(VEM)构成的,并且Prony系列参数涉及ANSYS®机械APDL学生版中的VEM建模。最终,在有限元分析瞬态环境中评估了控制器在闭环系统稳定和跟踪参考值方面的能力,并将仿真结果与现有方法进行了比较。
更新日期:2020-10-05
down
wechat
bug