当前位置: X-MOL 学术Palaeontology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Overcoming the constraints of spiral growth: the case of shell remodelling
Palaeontology ( IF 2.5 ) Pub Date : 2020-08-17 , DOI: 10.1111/pala.12503
Geerat J. Vermeij 1
Affiliation  

As animals grow in size, their relationship to the physical environment necessarily changes, but molluscs and brachiopods whose accretionary skeletons expand at one end of a hollow cone conform to logarithmic‐spiral growth and retain a constant shape. Dissolution and remodelling of previously formed parts of the skeleton can alleviate the constraints of strict logarithmic‐spiral growth. How, when, where and in which clades mineral skeletal resorption has evolved are important questions because they relate to the conditions and history of skeletal formation and to the way in which ocean acidification in the past influenced that history. A synthesis of data on mineral dissolution in shells shows that resorption from the inner surface of bivalve shells occurs under temporarily anaerobic conditions within the closed shell, but functional remodelling is unknown in bivalves. Resorption and functional remodelling occur in brachiopods, gastropods and terrestrial hermit crabs, and to a lesser extent in scaphopods and cephalopods. Internal whorl resorption leading to a more compact visceral mass has evolved at least ten times in gastropods. Contrary to expectations stemming from patterns in the availability of calcium, gastropod remodelling is a phenomenon of warm, calcium‐rich environments and not of cold acidified conditions. There is therefore no evidence that internal whorl resorption increases calcium‐use efficiency. Resorption is one of several mechanisms that have enabled animal skeletons to become more dynamic and adaptable during ontogeny.

中文翻译:

克服螺旋增长的限制:壳重塑的情况

随着动物大小的增长,它们与物理环境的关系必定会发生变化,但是其增生性骨骼在空心圆锥体一端扩展的软体动物和腕足动物符合对数螺旋生长并保持恒定的形状。骨骼的先前形成部分的溶解和重塑可以减轻严格对数螺旋生长的限制。进化枝如何,何时,何地和在哪些地方进化出矿物质骨骼吸收,是重要的问题,因为它们与骨骼形成的条件和历史以及过去海洋酸化影响该历史的方式有关。贝壳中矿物质溶解数据的综合显示,双壳贝壳内表面的吸收是在封闭壳内的暂时厌氧条件下发生的,但是功能重建在双壳类动物中是未知的。吸收和功能重塑发生在腕足类,腹足类和陆生寄居蟹中,而在腕足类和头足类中则较少。在腹足动物中,导致内脏团块更加紧凑的内部螺纹吸收已经进化了至少十倍。与钙的可利用性模式产生的预期相反,腹足动物重塑是温暖,富含钙的环境而不是冷酸化条件下的现象。因此,没有证据表明内部螺纹吸收会增加钙的利用效率。吸收是使动物骨骼在个体发育过程中变得更有活力和适应性的几种机制之一。而在腕足类和头足类动物中则较少。在腹足动物中,导致内脏团块更加紧凑的内部螺纹吸收已经进化了至少十倍。与钙的可利用性模式产生的预期相反,腹足动物重塑是温暖,富含钙的环境而不是冷酸化条件下的现象。因此,没有证据表明内部螺纹吸收会增加钙的利用效率。吸收是使动物骨骼在个体发育过程中变得更有活力和适应性的几种机制之一。而在腕足类和头足类动物中则较少。在腹足动物中,导致内脏团块更加紧凑的内部螺纹吸收已经进化了至少十倍。与钙的可利用性模式产生的预期相反,腹足动物重塑是温暖,富含钙的环境而不是冷酸化条件下的现象。因此,没有证据表明内部螺纹吸收会增加钙的利用效率。吸收是使动物骨骼在个体发育过程中变得更有活力和适应性的几种机制之一。腹足动物重塑是温暖,富含钙的环境而不是冷酸化条件下的现象。因此,没有证据表明内部螺纹吸收会增加钙的利用效率。吸收是使动物骨骼在个体发育过程中变得更有活力和适应性的几种机制之一。腹足动物重塑是温暖,富含钙的环境而不是冷酸化条件下的现象。因此,没有证据表明内部螺纹吸收会增加钙的利用效率。吸收是使动物骨骼在个体发育过程中变得更有活力和适应性的几种机制之一。
更新日期:2020-08-17
down
wechat
bug