当前位置: X-MOL 学术Int. J. Mater. Form. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An application of fully coupled ductile damage model considering induced anisotropies on springback prediction of advanced high strength steel materials
International Journal of Material Forming ( IF 2.6 ) Pub Date : 2020-08-17 , DOI: 10.1007/s12289-020-01582-9
M. Yetna N’jock , H. Badreddine , C. Labergere , Z. Yue , K. Saanouni , V.-T. Dang

In this paper, an advanced model formulated in the framework of non-associative plasticity is used to accurately predict the springback of advanced high strength steels material. The proposed model strongly couples the isotropic ductile damage to the phenomena a combined nonlinear isotropic and kinematic hardening, initial anisotropic plastic flow and induced anisotropies due to the distortion of the yield function and the plastic potential respectively. For the application, the simulations were conducted for U-draw bending of as-received DP 780 steel sheet proposed by Numisheet’2011 Benchmark. The proposed model was able to capture adequately the Bauschinger effect, transient hardening (distortional) and ductile damage-induced softening. The results have shown that the distortion of yield function affect significantly the stress distribution especially in the sidewall curl during the forming stage thereby explaining observed variations in springback. For full coupling with isotropic ductile damage, the predicted angular springback was found in good agreement with experimental measurements and the sidewall curl was significantly improved in comparison to the simple use of hardening models. This means that isotropic ductile damage and its effect on the other physical phenomena require special attention in order to take benefit when designing newly developed advanced high strength steels (AHSS) parts for automotive and aerospace industries.



中文翻译:

考虑各向异性的全耦合延性损伤模型在高级高强度钢回弹预测中的应用

在本文中,在非缔合塑性框架内建立的高级模型用于精确预测高级高强度钢材料的回弹。所提出的模型将各向同性延性损伤与非线性各向同性和运动学硬化,初始各向异性塑性流动和分别由于屈服函数和塑性势的畸变引起的各向异性相结合。对于该应用,对Numisheet'2011 Benchmark提出的DP 780钢板的U型拉伸弯曲进行了仿真。所提出的模型能够充分捕获包辛格效应,瞬态硬化(变形)和延性损伤引起的软化。结果表明,屈服函数的变形会显着影响应力分布,尤其是在成型阶段的侧壁卷曲中,从而解释了所观察到的回弹变化。对于与各向同性的延性损伤的完全耦合,发现预测的角度回弹与实验测量值非常吻合,并且与简单使用淬火模型相比,侧壁的翘曲得到了显着改善。这意味着各向同性的延性损伤及其对其他物理现象的影响需要特别注意,以便在设计用于汽车和航空航天业的最新开发的高级高强度钢(AHSS)零件时受益。对于与各向同性延性损伤的完全耦合,发现预测的角度回弹与实验测量值非常吻合,并且与简单使用淬火模型相比,侧壁的翘曲得到了显着改善。这意味着各向同性的延性损伤及其对其他物理现象的影响需要特别注意,以便在设计用于汽车和航空航天业的最新开发的高级高强度钢(AHSS)零件时受益。对于与各向同性的延性损伤的完全耦合,发现预测的角度回弹与实验测量值非常吻合,并且与简单使用淬火模型相比,侧壁的翘曲得到了显着改善。这意味着各向同性的延性损伤及其对其他物理现象的影响需要特别注意,以便在设计用于汽车和航空航天业的最新开发的高级高强度钢(AHSS)零件时受益。

更新日期:2020-08-17
down
wechat
bug