当前位置: X-MOL 学术J. Atmos. Sol. Terr. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long term trends of mesopheric ice layers: A model study
Journal of Atmospheric and Solar-Terrestrial Physics ( IF 1.8 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.jastp.2020.105378
Franz-Josef Lübken , Gerd Baumgarten , Uwe Berger

Abstract Trends derived from the Leibniz-Institute Middle Atmosphere Model (LIMA) and the MIMAS ice particle model (Mesospheric Ice Microphysics And tranSport model) are presented for a period of 138 years (1871–2008) and for middle, high and arctic latitudes, namely 58 °N, 69 N ∘ N, and 78 °N, respectively. We focus on the analysis of mesospheric ice layers (NLC, noctilucent clouds) in the main summer season (July) and on yearly mean values. Model runs with and without an increase of carbon dioxide and water vapor (from methane oxidation) concentration are performed. Trends are most prominent after ∼ 1960 when the increase of both CO2 and H2O accelerates. It is important to distinguish between tendencies on geometric altitudes and on given pressure levels converted to altitudes (‘pressure altitudes’). Negative trends of (geometric) NLC altitudes are primarily due to cooling below NLC altitudes caused by CO2 increase. Increases of ice particle radii and NLC brightness with time are mainly caused by an enhancement of water vapor. Several ice layer and background parameter trends are similar at high and arctic latitudes but are substantially different at middle latitudes. This concerns, for example, occurrence rates, ice water content (IWC), and number of ice particles in a column. Considering the time period after 1960, geometric altitudes of NLC decrease by approximately 260 m per decade, and brightness increases by roughly 50% (1960–2008), independent of latitude. NLC altitudes decrease by approximately 15–20 m per increase of CO2 by 1 ppmv. The number of ice particles in a column and also at the altitude of maximum backscatter is nearly constant with time. At all latitudes, yearly mean NLC appear at altitudes where temperatures are close to 145 ± 1 K. Ice particles are present nearly all the time at high and arctic latitudes, but are much less common at middle latitudes. Ice water content and maximum backscatter ( β max ) are highly correlated, where the slope depends on latitude. This allows to combine data sets from satellites and lidars. Furthermore, IWC and the concentration of water vapor at β max are also strongly correlated. Nearly all trends depend on a lower limit applied for β max , e.g., IWC and occurrence rates. Results from LIMA/MIMAS are in very good agreement with observations.

中文翻译:

中层冰层的长期趋势:模型研究

摘要 来自莱布尼茨研究所中层大气模型 (LIMA) 和 MIMAS 冰粒子模型(中层冰微物理和运输模型)的趋势呈现了 138 年(1871-2008 年)期间以及中、高和北极纬度的趋势,即分别为 58 °N、69 N ∘ N 和 78 °N。我们专注于主要夏季(7 月)的中间层冰层(NLC,夜光云)和年度平均值的分析。在二氧化碳和水蒸气(来自甲烷氧化)浓度增加和不增加的情况下进行模型运行。大约 1960 年以后,当 CO2 和 H2O 的增加都加速时,趋势最为突出。区分几何高度的趋势和转换为高度的给定压力水平(“压力高度”)是很重要的。(几何)NLC 高度的负面趋势主要是由于 CO2 增加导致低于 NLC 高度的冷却。冰粒子半径和 NLC 亮度随时间的增加主要是由水汽增强引起的。几个冰层和背景参数趋势在高纬度和北极纬度相似,但在中纬度有很大不同。例如,这涉及到出现率、冰水含量 (IWC) 和柱中冰粒的数量。考虑到 1960 年之后的时间段,NLC 的几何高度每十年下降约 260 m,亮度增加约 50%(1960-2008),与纬度无关。CO2 每增加 1 ppmv,NLC 高度就会降低大约 15–20 m。柱中以及最大反向散射高度处的冰粒数量几乎随时间恒定。在所有纬度,年平均 NLC 出现在温度接近 145 ± 1 K 的高度。冰粒几乎一直存在于高纬度和北极纬度地区,但在中纬度地区不太常见。冰水含量和最大反向散射 (β max ) 高度相关,其中斜率取决于纬度。这允许组合来自卫星和激光雷达的数据集。此外,IWC 和 β max 处的水蒸气浓度也有很强的相关性。几乎所有的趋势都取决于应用于 β max 的下限,例如 IWC 和发生率。LIMA/MIMAS 的结果与观察结果非常吻合。年平均 NLC 出现在温度接近 145 ± 1 K 的高度。冰粒几乎一直存在于高纬度和北极纬度地区,但在中纬度地区不太常见。冰水含量和最大反向散射 (β max ) 高度相关,其中斜率取决于纬度。这允许组合来自卫星和激光雷达的数据集。此外,IWC 和 β max 处的水蒸气浓度也有很强的相关性。几乎所有的趋势都取决于应用于 β max 的下限,例如 IWC 和发生率。LIMA/MIMAS 的结果与观察结果非常吻合。年平均 NLC 出现在温度接近 145 ± 1 K 的高度。冰粒几乎一直存在于高纬度和北极纬度地区,但在中纬度地区不太常见。冰水含量和最大反向散射 (β max ) 高度相关,其中斜率取决于纬度。这允许组合来自卫星和激光雷达的数据集。此外,IWC 和 β max 处的水蒸气浓度也有很强的相关性。几乎所有的趋势都取决于应用于 β max 的下限,例如 IWC 和发生率。LIMA/MIMAS 的结果与观察结果非常吻合。其中坡度取决于纬度。这允许组合来自卫星和激光雷达的数据集。此外,IWC 和 β max 处的水蒸气浓度也有很强的相关性。几乎所有的趋势都取决于应用于 β max 的下限,例如 IWC 和发生率。LIMA/MIMAS 的结果与观察结果非常吻合。其中坡度取决于纬度。这允许组合来自卫星和激光雷达的数据集。此外,IWC 和 β max 处的水蒸气浓度也有很强的相关性。几乎所有的趋势都取决于应用于 β max 的下限,例如 IWC 和发生率。LIMA/MIMAS 的结果与观察结果非常吻合。
更新日期:2021-03-01
down
wechat
bug