当前位置: X-MOL 学术Rend. Fis. Acc. Lincei. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anisotropy and NMR spectroscopy
Rendiconti Lincei. Scienze Fisiche e Naturali ( IF 2.1 ) Pub Date : 2020-08-16 , DOI: 10.1007/s12210-020-00945-3
Francesca Nardelli , Silvia Borsacchi , Lucia Calucci , Elisa Carignani , Francesca Martini , Marco Geppi

Abstract

In this paper, different aspects concerning anisotropy in Nuclear Magnetic Resonance (NMR) spectroscopy have been reviewed. In particular, the relevant theory has been presented, showing how anisotropy stems from the dependence of internal nuclear spin interactions on the molecular orientation with respect to the external magnetic field direction. The consequences of anisotropy in the use of NMR spectroscopy have been critically discussed: on one side, the availability of very detailed structural and dynamic information, and on the other side, the loss of spectral resolution. The experiments used to measure the anisotropic properties in solid and soft materials, where, in contrast to liquids, such properties are not averaged out by the molecular tumbling, have been described. Such experiments can be based either on static low-resolution techniques or on one- and two-dimensional pulse sequences exploiting Magic Angle Spinning (MAS). Examples of applications of NMR spectroscopy have been shown, which exploit anisotropy to obtain important physico-chemical information on several categories of systems, including pharmaceuticals, inorganic materials, polymers, liquid crystals, and self-assembling amphiphiles in water. Solid-state NMR spectroscopy can be considered, nowadays, one of the most powerful characterization techniques for all kinds of solid, either amorphous or crystalline, and semi-solid systems for the obtainment of both structural and dynamic properties on a molecular and supra-molecular scale.

Graphic abstract



中文翻译:

各向异性和NMR光谱

摘要

在本文中,已综述了有关核磁共振(NMR)各向异性的各个方面。特别地,已经提出了相关的理论,其表明各向异性是如何由内部核自旋相互作用对相对于外部磁场方向的分子取向的依赖性引起的。已经对使用NMR光谱法各向异性的后果进行了严格的讨论:一方面,非常详细的结构和动态信息的可用性,另一方面,光谱分辨率的损失。已经描述了用于测量固体和软质材料中各向异性特性的实验,与液体相反,这些特性不能通过分子翻滚求出平均值。这样的实验可以基于静态低分辨率技术,也可以基于利用魔角旋转(MAS)的一维和二维脉冲序列。已经显示了NMR光谱的应用示例,这些示例利用各向异性来获得有关几类系统的重要物理化学信息,包括药物,无机材料,聚合物,液晶和水中的自组装两亲物。如今,可以将固态NMR光谱学视为对所有固体,无定形或晶体以及半固体体系进行分析的最强大的表征技术之一,以获取分子和超分子的结构和动力学性质规模。已经显示了NMR光谱的应用示例,这些示例利用各向异性来获得有关几类系统的重要物理化学信息,包括药物,无机材料,聚合物,液晶和水中的自组装两亲物。如今,可以将固态NMR光谱学视为对所有固体,无定形或晶体以及半固体体系进行分析的最强大的表征技术之一,以获取分子和超分子的结构和动力学性质规模。已经显示了NMR光谱的应用示例,这些示例利用各向异性来获得有关几类系统的重要物理化学信息,包括药物,无机材料,聚合物,液晶和水中的自组装两亲物。如今,可以将固态NMR光谱学视为对所有固体,无定形或晶体以及半固体体系进行分析的最强大的表征技术之一,以获取分子和超分子的结构和动力学性质规模。

图形摘要

更新日期:2020-08-16
down
wechat
bug