当前位置: X-MOL 学术Batteries Supercaps › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Encapsulating Oxygen‐Deficient TiNb24O62 Microspheres by N‐Doped Carbon Nanolayer Boosts Capacity and Stability of Lithium‐Ion Battery
Batteries & Supercaps ( IF 5.1 ) Pub Date : 2020-08-15 , DOI: 10.1002/batt.202000152
Jiangmin Jiang 1 , Zhiwei Li 1 , Guangdi Nie 2 , Ping Nie 3 , Zhenghui Pan 4 , Zongkui Kou 5 , Qiang Chen 6 , Qi Zhu 1 , Hui Dou 1 , Xiaogang Zhang 7 , John Wang 5
Affiliation  

Most of the insertion anode materials are approaching their specific capacity limitations. TiNb24O62, combining the merits of high theoretical capacity, large working potential and excellent safety, is a promising candidate for lithium‐ion batteries (LIBs). However, its poor intrinsic conductivity and relatively sluggish reaction kinetics hinder its wide applications. Herein, we encapsulate the oxygen‐deficient TiNb24O62 microspheres by highly conductive N‐doped carbon nanolayer (DTNO@NC), where TiNb24O62 is purposely made to exhibit oxygen deficiency, by aerosol spray followed by co‐carbonization of the electronically coupled polydopamine (PDA) coating layer. The oxygen‐deficient engineering for TiNb24O62 improves the intrinsic conductivity and active sites, while the PDA derived N‐doped carbon coating layer not only stabilizes the interface between the electrode and electrolyte, but also further enhances the overall conductivity. As a result, the as‐fabricated DTNO@NC electrode delivers excellent Li+ ion storage capacity (270 mAh g−1 at 0.1 A g−1) and superior cycling lifespan (capacity retention of 90 % after 1000 cycles). This work demonstrates the effectiveness of integrating an oxygen‐deficient structure of intercalation‐type anode material with a carbon encapsulating nanolayer in enabling the overall energy storage performance.

中文翻译:

N掺杂碳纳米层包裹缺氧的TiNb24O62微球提高了锂离子电池的容量和稳定性

大多数插入阳极材料正接近其特定的容量极限。TiNb 24 O 62结合了高理论容量,巨大的工作潜力和出色的安全性,是锂离子电池(LIB)的有希望的候选者。然而,其固有的电导率差和相对较慢的反应动力学阻碍了其广泛的应用。在这里,我们通过高导电性的N掺杂碳纳米层(DTNO @ NC)封装了缺氧的TiNb 24 O 62微球,其中TiNb 24 O 62通过气雾喷涂,随后电子耦合的聚多巴胺(PDA)涂层的共碳化,有意使之表现出缺氧状态。TiNb 24 O 62的缺氧工程改善了固有电导率和活性位,而PDA衍生的N掺杂碳涂层不仅稳定了电极和电解质之间的界面,而且进一步提高了整体电导率。其结果是,所述的制成DTNO @ NC电极提供出色的锂+离子存储容量(270毫安克-1在0.1 A克-1)和更长的循环寿命(1000次循环后容量保持率达90%)。这项工作证明了将嵌入型阳极材料的缺氧结构与碳封装纳米层相结合的有效性,从而实现了整体储能性能。
更新日期:2020-08-15
down
wechat
bug