当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Black Hole Feedback Valve in Massive Galaxies
The Astrophysical Journal ( IF 4.8 ) Pub Date : 2020-08-13 , DOI: 10.3847/1538-4357/aba42e
G. Mark Voit 1 , Greg L. Bryan 2, 3 , Deovrat Prasad 1 , Rachel Frisbie 1 , Yuan Li 3, 4 , Megan Donahue 1 , Brian W. O’Shea 1, 5, 6 , Ming Sun 7 , Norbert Werner 8
Affiliation  

Star formation in the universe's most massive galaxies proceeds furiously early in time but then nearly ceases. Plenty of hot gas remains available but does not cool and condense into star-forming clouds. Active galactic nuclei (AGN) release enough energy to inhibit cooling of the hot gas, but energetic arguments alone do not explain why quenching of star formation is most effective in high-mass galaxies. In fact, optical observations show that quenching is more closely related to a galaxy's central stellar velocity dispersion ($\sigma_v$) than to any other characteristic. Here, we show that high $\sigma_v$ is critical to quenching because a deep central potential well maximizes the efficacy of AGN feedback. In order to remain quenched, a galaxy must continually sweep out the gas ejected from its aging stars. Supernova heating can accomplish this task as long as the AGN sufficiently reduces the gas pressure of the surrounding circumgalactic medium (CGM). We find that CGM pressure acts as the control knob on a valve that regulates AGN feedback and suggest that feedback power self-adjusts so that it suffices to lift the CGM out of the galaxy's potential well. Supernova heating then drives a galactic outflow that remains homogeneous if $\sigma_v \gtrsim 240 \, {\rm km \, s^{-1}}$. AGN feedback can effectively quench galaxies with a comparable velocity dispersion, but feedback in galaxies with a much lower velocity dispersion tends to result in convective circulation and accumulation of multiphase gas within the galaxy.

中文翻译:

大质量星系中的黑洞反馈阀

宇宙中质量最大的星系中的恒星形成在时间的早期进行得非常激烈,但随后几乎停止。仍有大量热气体可用,但不会冷却并凝结成恒星形成云。活动星系核 (AGN) 释放出足够的能量来抑制热气体的冷却,但仅凭能量论并不能解释为什么恒星形成的淬灭在高质量星系中最有效。事实上,光学观测表明,淬灭与星系的中心恒星速度色散 ($\sigma_v$) 的关系比与任何其他特征更密切相关。在这里,我们表明高 $\sigma_v$ 对淬灭至关重要,因为深中心势阱可以最大化 AGN 反馈的功效。为了保持淬火状态,星系必须不断清除老化恒星喷出的气体。只要 AGN 充分降低周围环绕星系介质 (CGM) 的气压,超新星加热就可以完成这项任务。我们发现 CGM 压力充当调节 AGN 反馈的阀门上的控制旋钮,并表明反馈功率会自我调节,以便足以将 CGM 提升出星系的势阱。如果 $\sigma_v \gtrsim 240 \, {\rm km \, s^{-1}}$ ,则超新星加热会驱动星系流出,该流出保持均匀。AGN 反馈可以有效地淬灭速度弥散相当的星系,但速度弥散低得多的星系中的反馈往往会导致对流循环和星系内多相气体的积累。我们发现 CGM 压力充当调节 AGN 反馈的阀门上的控制旋钮,并表明反馈功率会自我调节,以便足以将 CGM 提升出星系的势阱。如果 $\sigma_v \gtrsim 240 \, {\rm km \, s^{-1}}$ ,则超新星加热会驱动星系流出,该流出保持均匀。AGN 反馈可以有效地淬灭速度弥散相当的星系,但速度弥散低得多的星系中的反馈往往会导致对流循环和星系内多相气体的积累。我们发现 CGM 压力充当调节 AGN 反馈的阀门上的控制旋钮,并表明反馈功率会自我调节,以便足以将 CGM 提升出星系的势阱。如果 $\sigma_v \gtrsim 240 \, {\rm km \, s^{-1}}$ ,则超新星加热会驱动星系流出,该流出保持均匀。AGN 反馈可以有效地淬灭速度弥散相当的星系,但速度弥散低得多的星系中的反馈往往会导致对流循环和星系内多相气体的积累。如果 $\sigma_v \gtrsim 240 \, {\rm km \, s^{-1}}$ ,则超新星加热会驱动星系流出,该流出保持均匀。AGN 反馈可以有效地淬灭速度弥散相当的星系,但速度弥散低得多的星系中的反馈往往会导致对流循环和星系内多相气体的积累。如果 $\sigma_v \gtrsim 240 \, {\rm km \, s^{-1}}$,则超新星加热会驱动星系流出,该流出保持均匀。AGN 反馈可以有效地淬灭速度弥散相当的星系,但速度弥散低得多的星系中的反馈往往会导致对流循环和星系内多相气体的积累。
更新日期:2020-08-13
down
wechat
bug