当前位置: X-MOL 学术BBA Mol. Cell Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research ( IF 4.6 ) Pub Date : 2020-08-13 , DOI: 10.1016/j.bbamcr.2020.118823
Miriam Linsenmeier 1 , Marie R G Kopp 1 , Stavros Stavrakis 1 , Andrew de Mello 1 , Paolo Arosio 1
Affiliation  

An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.



中文翻译:

利用微流体技术分析生物分子缩合物和蛋白质相分离。

越来越多的证据表明,无膜细胞器是细胞组织的关键组成部分。这些观察结果提出了关于其组装,拆卸和功能的理化规则的各种悬而未决的问题。在复杂的体内系统中,生物分子缩合物的某些分子决定因素难以探测和理解。简约体外重构方法可以填补这一空白,模仿关键的生物学特征,同时保持足够的简便性,从而能够分析生物分子缩合物的基本方面。在这种情况下,微流体技术是用于分析生物分子相变的极具吸引力的工具。除了可以对少量样品进行高通量测量外,微流体工具还可以在时间和空间上对自组装进行精确控制,从而可以对生物分子相变进行准确的定量分析。在这里,特别关注基于液滴的微流控技术,我们描述了微流控技术在分析相分离几个方面时的优势。其中包括相图,组装和拆卸动力学,流变和表面特性,与周围环境进行物质交换以及区室化和生化反应之间的耦合。我们用选定的例子说明了这些概念,包括单个蛋白质的简单溶液到蛋白质和RNA的更复杂的混合物,这些代表了生物无膜细胞器的合成模型。最后,我们讨论了该技术如何影响合成人工细胞的自下而上制造以及生物技术中合成蛋白材料的开发。代表生物无膜细胞器的合成模型。最后,我们讨论了该技术如何影响合成人工细胞的自下而上制造以及生物技术中合成蛋白材料的开发。代表了生物无膜细胞器的合成模型。最后,我们讨论了该技术如何影响合成人工细胞的自下而上制造以及生物技术中合成蛋白材料的开发。

更新日期:2020-10-06
down
wechat
bug