当前位置: X-MOL 学术Atmos. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating fugitive particle emission from coal storage yard of thermal power plant using the flux-gradient method
Atmospheric Environment ( IF 4.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.atmosenv.2020.117860
SunTae Kim , Juin Kim , IlHwan Choi , Hui Li , Jung Ho Kang , Hyeon Jun Eo

Abstract In this paper, a 3D sonic anemometer and two optical particulate sensors were used to observe fugitive particulate matter 10 μm (PM10) emission from the coal storage yard of a thermal power plant for one month. The PM10 emission flux was calculated using the flux gradient method. The results show that the heat flux, convective velocity, and PM10 emission flux have obvious diurnal variation. The PM10 emission flux is positively correlated with heat flux, convective velocity, and frictional velocity, but negatively correlated with humidity. Based on the convective velocity, friction velocity and humidity as the independent variables, a multivariate regression model of PM10 emission flux was constructed. The prediction results of the model are in good agreement with the experimental values. The emission flux of PM10 can also be estimated quasi-quantitatively according to the value of gradient Richardson number (Ri). There are two time windows for PM10 emissions, namely the discharge window period (9:00–20:00) and the static window period (20:00–9:00 of next day).In order to reduce PM10 emissions more effectively, artificial climate intervention such as watering, spraying, and other measures should be carried out during the discharge window period. Studies have shown that the flux gradient method can be successfully used to accurately measure the PM10 emission flux of a coal storage yard. This study also provides useful recommendations for real-time monitoring and controlling PM10 emissions from coal storage sites.

中文翻译:

用通量梯度法估算火电厂储煤场散逸粒子排放量

摘要 本文采用3D声波风速计和2个光学颗粒传感器对某热电厂储煤场10μm(PM10)散逸性颗粒物排放量进行了1个月的观测。PM10 排放通量采用通量梯度法计算。结果表明,热通量、对流速度和PM10排放通量具有明显的日变化。PM10 排放通量与热通量、对流速度和摩擦速度呈正相关,但与湿度呈负相关。以对流速度、摩擦速度和湿度为自变量,构建了PM10排放通量的多元回归模型。模型的预测结果与实验值吻合较好。PM10 的排放通量也可以根据梯度理查森数 (Ri) 的值进行准定量估计。PM10排放有两个时间窗口,即排放窗口期(9:00-20:00)和静态窗口期(次日20:00-9:00)。 为了更有效地减少PM10排放,排放窗口期应采取浇水、喷药等人工气候干预措施。研究表明,通量梯度法可成功用于准确测量储煤场PM10排放通量。本研究还为实时监测和控制煤炭储存场所的 PM10 排放提供了有用的建议。即排放窗口期(9:00-20:00)和静态窗口期(次日20:00-9:00)。 为了更有效地减少PM10排放,人工气候干预如浇水、喷洒、排放窗口期间应采取其他措施。研究表明,通量梯度法可成功用于准确测量储煤场PM10排放通量。本研究还为实时监测和控制煤炭储存场所的 PM10 排放提供了有用的建议。即排放窗口期(9:00-20:00)和静态窗口期(次日20:00-9:00)。 为了更有效地减少PM10排放,人工气候干预如浇水、喷洒、排放窗口期间应采取其他措施。研究表明,通量梯度法可成功用于准确测量储煤场PM10排放通量。本研究还为实时监测和控制煤炭储存场所的 PM10 排放提供了有用的建议。研究表明,通量梯度法可成功用于准确测量储煤场PM10排放通量。本研究还为实时监测和控制煤炭储存场所的 PM10 排放提供了有用的建议。研究表明,通量梯度法可成功用于准确测量储煤场PM10排放通量。本研究还为实时监测和控制煤炭储存场所的 PM10 排放提供了有用的建议。
更新日期:2020-12-01
down
wechat
bug