当前位置: X-MOL 学术Plasmonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Modeling of an Integrable and Tunable Plasmonic Pressure Sensor with Nanostructure Grating
Plasmonics ( IF 3 ) Pub Date : 2020-08-12 , DOI: 10.1007/s11468-020-01242-3
Morteza Mansouri , Ali Mir , Ali Farmani , Mohsen Izadi

Plasmonic pressure sensors play a major role in advanced applications due to their unique properties including their small footprint and high sensitivity. The design of sensors with a wide pressure range and high sensitivity, especially at low pressure (0–5 KPa), is in high demand. To this end, here, a tunable, ultra-sensitive and wide-range plasmonic pressure sensor based on nanostructure gratings is proposed. We present a numerical method for designing a pressure sensor based on surface plasmon resonance (SPR) that can adjust the coupling state by varying the surface of the metal grating. The design is based on grating coupling changes according to the pressure applied. We used grating coupling for phase matching between light and surface plasmon polaritons (SPP). The light reflection output from the grating surface is proportional to the input pressure, where we illustrate that the SPR pairing state can be controlled by varying the grating pitch by changes in pressure applied to the diaphragm. In our numerical simulation, we consider solid deformation and transmission or reflection of light using the finite-difference time-domain (FDTD) and finite element method (FEM) to simulate the optical and mechanical properties, respectively. The many advantages of the proposed sensor include nanoscale, integrability, tunability, low power, low cost and wide pressure range. This sensor is capable of detecting pressure in the range of 0–1 kPa.



中文翻译:

具有纳米结构光栅的可调谐等离子压力传感器的数值建模

等离子体压力传感器由于其独特的特性(包括占地面积小和灵敏度高)而在高级应用中起着重要作用。迫切需要具有宽压力范围和高灵敏度的传感器设计,尤其是在低压(0-5 KPa)下。为此,在此提出了一种基于纳米结构光栅的可调谐,超灵敏,宽范围的等离激元压力传感器。我们提出了一种基于表面等离振子共振(SPR)设计压力传感器的数值方法,该方法可以通过改变金属光栅的表面来调整耦合状态。该设计基于光栅耦合根据所施加压力的变化。我们使用光栅耦合在光和表面等离振子极化子(SPP)之间进行相位匹配。从光栅表面输出的光反射与输入压力成正比,在这里我们说明可以通过改变施加在膜片上的压力来改变光栅间距来控制SPR配对状态。在我们的数值模拟中,我们考虑使用有限差分时域(FDTD)和有限元方法(FEM)分别模拟光的物理变形和透射或反射,以模拟光学和机械特性。所提出的传感器的许多优点包括纳米级,可集成性,可调性,低功耗,低成本和宽压力范围。该传感器能够检测0-1 kPa范围内的压力。在我们的数值模拟中,我们考虑使用有限差分时域(FDTD)和有限元方法(FEM)分别对光的固体变形和透射或反射进行模拟,以模拟光学和机械特性。所提出的传感器的许多优点包括纳米级,可集成性,可调性,低功耗,低成本和宽压力范围。该传感器能够检测0-1 kPa范围内的压力。在我们的数值模拟中,我们考虑使用有限差分时域(FDTD)和有限元方法(FEM)分别对光的固体变形和透射或反射进行模拟,以模拟光学和机械特性。所提出的传感器的许多优点包括纳米级,可集成性,可调性,低功耗,低成本和宽压力范围。该传感器能够检测0-1 kPa范围内的压力。

更新日期:2020-08-14
down
wechat
bug