当前位置: X-MOL 学术Inter. J. Metalcast. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Combined Effect of Cooling Slope Plate Casting and Mold Vibration on Microstructure, Hardness and Wear Behavior of Al–Si Alloy (A390)
International Journal of Metalcasting ( IF 2.6 ) Pub Date : 2020-08-12 , DOI: 10.1007/s40962-020-00497-0
M. M. Shehata , S. El-Hadad , M. E. Moussa , M. El-Shennawy

Semisolid casting using the cooling slope plate method (CSP) is known to refine the microstructure of hypereutectic aluminum alloys and enhance their mechanical properties. The current research investigates the combined effect of casting using the CSP and mechanical vibration of the mold on microstructure and wear behavior of A390 alloy. After pouring the alloy on the CSP, the mold (sand/metallic) was vibrated mechanically at 50 Hz during filling and up to solidification. Conventional casting with the same mold vibration conditions was also done for comparison. During CSP casting with mechanical vibration of the mold, the crystal nucleus multiplication inhibits the grain growth, and the dendrite break-up takes place simultaneously, leading to refinement of the microstructure. The double effect of the shear force by melt flow and vibrational turbulence is responsible for fragmentation of the particles. This finding was more pronounced in case of using the sand mold. The quantitative measurements showed that the size of primary Si reduced from ~ 184 μm for the conventional casting in the sand mold without vibration to ~ 70 μm when the mold was vibrated and from ~ 30 μm in case of CSP down to ~ 20 μm when CSP was followed by mechanical vibration of the mold. However, applying the mechanical vibration after CSP in case of the metallic mold increased the size of primary Si from ~ 21 to 36 μm. Accordingly, the improvement in the hardness and wear resistance of the CSP samples due to vibration was more significant in case of using the sand mold.



中文翻译:

冷却斜板铸造和结晶器振动对Al-Si合金(A390)的组织,硬度和磨损行为的综合影响

众所周知,使用冷却斜板法(CSP)进行半固态铸造可改善过共晶铝合金的微观结构并增强其机械性能。当前的研究调查了使用CSP铸造和模具的机械振动对A390合金的组织和磨损行为的综合影响。将合金倒在CSP上后,在填充过程中直至凝固,模具(砂/金属)以50 Hz的机械振动。为了进行比较,还进行了具有相同模具振动条件的常规铸造。在通过模具的机械振动进行的CSP铸造过程中,晶核倍增抑制了晶粒的生长,并且枝晶破裂同时发生,从而导致了微结构的细化。熔体流动和振动湍流引起的剪切力的双重作用导致颗粒破碎。在使用砂模的情况下,这一发现更为明显。定量测量表明,原始Si的尺寸从无振动的传统砂型铸模中的〜184μm减小到振动时的〜70μm,而CSP时从〜30μm减小到CSP时的〜20μm。其次是模具的机械振动。然而,在金属模具的情况下,在CSP之后施加机械振动会使原始Si的尺寸从〜21微米增加到36微米。因此,在使用砂模的情况下,由于振动导致的CSP样品的硬度和耐磨性的改善更为显着。在使用砂模的情况下,这一发现更为明显。定量测量表明,原始Si的尺寸从无振动的砂模中常规铸件的〜184μm减小到模具振动时的〜70μm,而CSP时从〜30μm减小到CSP时的〜20μm其次是模具的机械振动。但是,在金属模具的情况下,在CSP之后施加机械振动会使原始Si的尺寸从〜21微米增加到36微米。因此,在使用砂模的情况下,由于振动导致的CSP样品的硬度和耐磨性的改善更为显着。在使用砂模的情况下,这一发现更为明显。定量测量表明,原始Si的尺寸从无振动的传统砂型铸模中的〜184μm减小到振动时的〜70μm,而CSP时从〜30μm减小到CSP时的〜20μm。其次是模具的机械振动。但是,在金属模具的情况下,在CSP之后施加机械振动会使原始Si的尺寸从〜21微米增加到36微米。因此,在使用砂模的情况下,由于振动导致的CSP样品的硬度和耐磨性的改善更为显着。定量测量表明,原始Si的尺寸从无振动的传统砂型铸模中的〜184μm减小到振动时的〜70μm,而CSP时从〜30μm减小到CSP时的〜20μm。其次是模具的机械振动。但是,在金属模具的情况下,在CSP之后施加机械振动会使原始Si的尺寸从〜21微米增加到36微米。因此,在使用砂模的情况下,由于振动导致的CSP样品的硬度和耐磨性的改善更为显着。定量测量表明,原始Si的尺寸从无振动的传统砂型铸模中的〜184μm减小到振动时的〜70μm,而CSP时从〜30μm减小到CSP时的〜20μm。其次是模具的机械振动。但是,在金属模具的情况下,在CSP之后施加机械振动会使原始Si的尺寸从〜21微米增加到36微米。因此,在使用砂模的情况下,由于振动导致的CSP样品的硬度和耐磨性的改善更为显着。

更新日期:2020-08-14
down
wechat
bug