当前位置: X-MOL 学术Microb. Cell Fact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient biosynthesis of cinnamyl alcohol by engineered Escherichia coli overexpressing carboxylic acid reductase in a biphasic system.
Microbial Cell Factories ( IF 4.3 ) Pub Date : 2020-08-12 , DOI: 10.1186/s12934-020-01419-9
Chen Zhang 1, 2 , Qian Xu 1 , Hongliang Hou 1 , Jiawei Wu 1 , Zhaojuan Zheng 1, 3 , Jia Ouyang 1, 2
Affiliation  

Cinnamyl alcohol is not only a kind of flavoring agent and fragrance, but also a versatile chemical applied in the production of various compounds. At present, the preparation of cinnamyl alcohol depends on plant extraction and chemical synthesis, which have several drawbacks, including limited scalability, productivity and environmental impact. It is therefore necessary to develop an efficient, green and sustainable biosynthesis method. Herein, we constructed a recombinant Escherichia coli BLCS coexpressing carboxylic acid reductase from Nocardia iowensis and phosphopantetheine transferase from Bacillus subtilis. The strain could convert cinnamic acid into cinnamyl alcohol without overexpressing alcohol dehydrogenase or aldo–keto reductase. Severe product inhibition was found to be the key limiting factor for cinnamyl alcohol biosynthesis. Thus, a biphasic system was proposed to overcome the inhibition of cinnamyl alcohol via in situ product removal. With the use of a dibutyl phthalate/water biphasic system, not only was product inhibition removed, but also the simultaneous separation and concentration of cinnamyl alcohol was achieved. Up to 17.4 mM cinnamic acid in the aqueous phase was totally reduced to cinnamyl alcohol with a yield of 88.2%, and the synthesized cinnamyl alcohol was concentrated to 37.4 mM in the organic phase. This process also demonstrated robust performance when it was integrated with the production of cinnamic acid from l-phenylalanine. We developed an efficient one-pot two-step biosynthesis system for cinnamyl alcohol production, which opens up possibilities for the practical biosynthesis of natural cinnamyl alcohol at an industrial scale.

中文翻译:

在双相系统中通过工程化大肠杆菌高效表达羧酸还原酶来高效合成肉桂醇。

肉桂醇不仅是一种调味剂和香料,而且还是一种用于生产各种化合物的通用化学品。目前,肉桂醇的制备取决于植物提取和化学合成,其具有若干缺点,包括可扩展性,生产率和环境影响有限。因此,有必要开发一种有效,绿色和可持续的生物合成方法。在本文中,我们构建了重组表达大肠杆菌的BLCS,其共表达来自爱奥卡诺卡氏菌的羧酸还原酶和枯草芽孢杆菌的磷酸泛酸转移酶。该菌株可以将肉桂酸转化为肉桂醇,而不会过度表达乙醇脱氢酶或醛糖酮还原酶。发现严重的产物抑制是肉桂醇生物合成的关键限制因素。从而,提出了一种双相系统以克服通过原位产物去除对肉桂醇的抑制作用。通过使用邻苯二甲酸二丁酯/水双相系统,不仅消除了产物抑制作用,而且实现了肉桂醇的同时分离和浓缩。将水相中最多17.4 mM的肉桂酸全部还原为肉桂醇,产率为88.2%,并将合成的肉桂醇在有机相中浓缩至37.4 mM。当它与由1-苯丙氨酸生产肉桂酸相结合时,该方法还显示出强大的性能。我们开发了一种用于肉桂醇生产的高效一锅两步生物合成系统,这为工业规模的天然肉桂醇的实际生物合成开辟了可能性。不仅消除了产物抑制作用,而且实现了肉桂醇的同时分离和浓缩。将水相中最多17.4 mM的肉桂酸全部还原为肉桂醇,产率为88.2%,将合成的肉桂醇在有机相中浓缩至37.4 mM。当它与由1-苯丙氨酸生产肉桂酸相结合时,该方法还显示出强大的性能。我们开发了一种用于肉桂醇生产的高效一锅两步生物合成系统,这为工业规模的天然肉桂醇的实际生物合成开辟了可能性。不仅消除了产物抑制作用,而且实现了肉桂醇的同时分离和浓缩。将水相中最多17.4 mM的肉桂酸全部还原为肉桂醇,产率为88.2%,将合成的肉桂醇在有机相中浓缩至37.4 mM。当它与由1-苯丙氨酸生产肉桂酸相结合时,该方法还显示出强大的性能。我们开发了一种用于肉桂醇生产的高效一锅两步生物合成系统,这为工业规模的天然肉桂醇的实际生物合成开辟了可能性。将水相中的4 mM肉桂酸完全还原为肉桂醇,产率为88.2%,并将合成的肉桂醇在有机相中浓缩至37.4 mM。当它与由1-苯丙氨酸生产肉桂酸相结合时,该方法还显示出强大的性能。我们开发了一种用于肉桂醇生产的高效一锅两步生物合成系统,这为工业规模的天然肉桂醇的实际生物合成开辟了可能性。将水相中的4 mM肉桂酸完全还原为肉桂醇,产率为88.2%,并将合成的肉桂醇在有机相中浓缩至37.4 mM。当将其与由1-苯丙氨酸生产肉桂酸整合在一起时,该方法还显示出强大的性能。我们开发了一种用于肉桂醇生产的高效一锅两步生物合成系统,这为工业规模的天然肉桂醇的实际生物合成开辟了可能性。
更新日期:2020-08-14
down
wechat
bug