当前位置: X-MOL 学术Arch. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A system to study the expression of phytopathogenic genes encoded by Burkholderia glumae
Archives of Microbiology ( IF 2.8 ) Pub Date : 2020-08-12 , DOI: 10.1007/s00203-020-01986-w
A Mirghasempour 1 , B R Glick 2 , Y Hou 1 , S Huang 1
Affiliation  

Rice is often infected by bacterial panicle blight disease caused by Burkholderia glumae . Since most studies have assessed the transcriptome of the plant when it is exposed to bacteria, the gene expression of the phytopathogenic bacteria have not been well elaborated during the infection process or in the host cell. Recently, a few researches were conducted to evaluate the in vivo transcriptome of bacteria during the infective process. Most bacterial cells do not express genes involved in pathogenicity in culture medium making it difficult to investigate gene expression of bacterial cells in plant cells. Here, we sought a simulated patho-system that would allow bacterial cells to express their pathogenic genes. Thus, rice root exudates (RE) and bacterial N -acyl homoserine lactone (AHL) were used and their effects on bacterial gene expression were assessed. Transcription patterns of B. glumae virulence determinants showed that enrichment medium (LB + RE + C8-HSL) could significantly induce virulence factor genes compared with Luria Bertani (LB; control) medium. The data indicate that the artificial environment is similar to the real patho-system, and that this induced maximum relevant gene expression. In this model system, bacterial gene expression changes are traceable in the infection process. Bacterial cells exposed to either an artificial environment or LB + RE + C8-HSL behaved similarly to the natural environment in situ.

中文翻译:

一种研究由伯克霍尔德菌编码的植物致病基因表达的系统

水稻常感染由Burkholderia glumae 引起的细菌性穗枯病病。由于大多数研究评估了植物暴露于细菌时的转录组,因此在感染过程中或在宿主细胞中植物病原细菌的基因表达尚未得到很好的阐述。最近,进行了一些研究来评估感染过程中细菌的体内转录组。大多数细菌细胞在培养基中不表达与致病性有关的基因,因此很难研究植物细胞中细菌细胞的基因表达。在这里,我们寻求一种模拟的病理系统,可以让细菌细胞表达其致病基因。因此,使用水稻根系分泌物 (RE) 和细菌 N-酰基高丝氨酸内酯 (AHL) 并评估它们对细菌基因表达的影响。B. glumae 毒力决定簇的转录模式表明,与 Luria Bertani(LB;对照)培养基相比,富集培养基(LB + RE + C8-HSL)可以显着诱导毒力因子基因。数据表明人工环境与真实的病理系统相似,并且这诱导了最大的相关基因表达。在这个模型系统中,细菌基因表达的变化在感染过程中是可追溯的。暴露于人工环境或 LB + RE + C8-HSL 的细菌细胞的行为与原位自然环境相似。glumae 毒力决定因素表明,与 Luria Bertani(LB;对照)培养基相比,富集培养基(LB + RE + C8-HSL)可以显着诱导毒力因子基因。数据表明人工环境与真实的病理系统相似,并且这诱导了最大的相关基因表达。在这个模型系统中,细菌基因表达的变化在感染过程中是可追溯的。暴露于人工环境或 LB + RE + C8-HSL 的细菌细胞的行为与原位自然环境相似。glumae 毒力决定因素表明,与 Luria Bertani(LB;对照)培养基相比,富集培养基(LB + RE + C8-HSL)可以显着诱导毒力因子基因。数据表明人工环境与真实的病理系统相似,并且这诱导了最大的相关基因表达。在这个模型系统中,细菌基因表达的变化在感染过程中是可追溯的。暴露于人工环境或 LB + RE + C8-HSL 的细菌细胞的行为与原位自然环境相似。细菌基因表达的变化在感染过程中是可追溯的。暴露于人工环境或 LB + RE + C8-HSL 的细菌细胞的行为与原位自然环境相似。细菌基因表达的变化在感染过程中是可追溯的。暴露于人工环境或 LB + RE + C8-HSL 的细菌细胞的行为与原位自然环境相似。
更新日期:2020-08-12
down
wechat
bug