当前位置: X-MOL 学术Neural Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Mean-Field Description of Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation
Neural Computation ( IF 2.7 ) Pub Date : 2020-09-01 , DOI: 10.1162/neco_a_01300
Richard Gast 1 , Helmut Schmidt 1 , Thomas R Knösche 2
Affiliation  

Bursting plays an important role in neural communication. At the population level, macroscopic bursting has been identified in populations of neurons that do not express intrinsic bursting mechanisms. For the analysis of phase transitions between bursting and non-bursting states, mean-field descriptions of macroscopic bursting behavior are a valuable tool. In this article, we derive mean-field descriptions of populations of spiking neurons and examine whether states of collective bursting behavior can arise from short-term adaptation mechanisms. Specifically, we consider synaptic depression and spike-frequency adaptation in networks of quadratic integrate-and-fire neurons. Analyzing the mean-field model via bifurcation analysis, we find that bursting behavior emerges for both types of short-term adaptation. This bursting behavior can coexist with steady-state behavior, providing a bistable regime that allows for transient switches between synchronized and nonsynchronized states of population dynamics. For all of these findings, we demonstrate a close correspondence between the spiking neural network and the mean-field model. Although the mean-field model has been derived under the assumptions of an infinite population size and all-to-all coupling inside the population, we show that this correspondence holds even for small, sparsely coupled networks. In summary, we provide mechanistic descriptions of phase transitions between bursting and steady-state population dynamics, which play important roles in both healthy neural communication and neurological disorders.

中文翻译:

具有短期适应的尖峰神经网络中突发动力学的平均场描述

爆发在神经交流中起着重要作用。在群体水平上,已经在不表达内在爆发机制的神经元群体中发现了宏观爆发。对于突发和非突发状态之间的相变分析,宏观突发行为的平均场描述是一种有价值的工具。在本文中,我们推导出尖峰神经元群体的平均场描述,并检查集体爆发行为的状态是否可以由短期适应机制引起。具体来说,我们考虑了二次整合和激发神经元网络中的突触抑制和尖峰频率适应。通过分叉分析分析平均场模型,我们发现两种类型的短期适应都会出现爆发行为。这种爆发行为可以与稳态行为共存,提供双稳态机制,允许种群动态的同步和非同步状态之间的瞬态切换。对于所有这些发现,我们证明了尖峰神经网络和平均场模型之间的密切对应关系。尽管平均场模型是在无限种群规模和种群内部全对全耦合的假设下推导出来的,但我们表明,即使对于小的、稀疏耦合的网络,这种对应关系也成立。总之,我们提供了爆发和稳态种群动态之间相变的机械描述,这在健康的神经交流和神经系统疾病中都发挥着重要作用。提供一种双稳态机制,允许在种群动态的同步和非同步状态之间进行瞬时切换。对于所有这些发现,我们证明了尖峰神经网络和平均场模型之间的密切对应关系。尽管平均场模型是在无限种群规模和种群内部全对全耦合的假设下推导出来的,但我们表明,即使对于小的、稀疏耦合的网络,这种对应关系也成立。总之,我们提供了爆发和稳态种群动态之间相变的机械描述,这在健康的神经交流和神经系统疾病中都发挥着重要作用。提供一种双稳态机制,允许在种群动态的同步和非同步状态之间进行瞬时切换。对于所有这些发现,我们证明了尖峰神经网络和平均场模型之间的密切对应关系。尽管平均场模型是在无限种群规模和种群内部全对全耦合的假设下推导出来的,但我们表明,即使对于小的、稀疏耦合的网络,这种对应关系也成立。总之,我们提供了爆发和稳态种群动态之间相变的机械描述,这在健康的神经交流和神经系统疾病中都发挥着重要作用。我们证明了尖峰神经网络和平均场模型之间的密切对应关系。尽管平均场模型是在无限种群规模和种群内部全对全耦合的假设下推导出来的,但我们表明,即使对于小的、稀疏耦合的网络,这种对应关系也成立。总之,我们提供了爆发和稳态种群动态之间相变的机械描述,这在健康的神经交流和神经系统疾病中都发挥着重要作用。我们证明了尖峰神经网络和平均场模型之间的密切对应关系。尽管平均场模型是在无限种群规模和种群内部全对全耦合的假设下推导出来的,但我们表明,即使对于小的、稀疏耦合的网络,这种对应关系也成立。总之,我们提供了爆发和稳态种群动态之间相变的机械描述,这在健康的神经交流和神经系统疾病中都发挥着重要作用。
更新日期:2020-09-01
down
wechat
bug