当前位置: X-MOL 学术Electrophoresis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The influence of electrolyte concentration on nanofractures fabricated in a 3D-printed microfluidic device by controlled dielectric breakdown.
Electrophoresis ( IF 3.0 ) Pub Date : 2020-08-09 , DOI: 10.1002/elps.202000050
Md Fokhrul Islam 1 , Yiing C Yap 1, 2 , Feng Li 1 , Rosanne M Guijt 3 , Michael C Breadmore 1
Affiliation  

A three‐dimensional‐printed microfluidic device made of a thermoplastic material was used to study the creation of molecular filters by controlled dielectric breakdown. The device was made from acrylonitrile butadiene styrene by a fused deposition modeling three‐dimensional printer and consisted of two V‐shaped sample compartments separated by 750 µm of extruded plastic gap. Nanofractures were formed in the thin piece of acrylonitrile butadiene styrene by controlled dielectric breakdown by application voltage of 15–20 kV with the voltage terminated when reaching a defined current threshold. Variation of the size of the nanofractures was achieved by both variation of the current threshold and by variation of the ionic strength of the electrolyte used for breakdown. Electrophoretic transport of two proteins, R‐phycoerythrin (RPE; <10 nm in size) and fluorescamine‐labeled BSA (f‐BSA; 2–4 nm), was used to monitor the size and transport properties of the nanofractures. Using 1 mM phosphate buffer, both RPE and f‐BSA passed through the nanofractures when the current threshold was set to 25 µA. However, when the threshold was lowered to 10 µA or lower, RPE was restricted from moving through the nanofractures. When we increased the electrolyte concentration during breakdown from 1 to 10 mM phosphate buffer, BSA passed but RPE was blocked when the threshold was equal to, or lower than, 25 µA. This demonstrates that nanofracture size (pore area) is directly related to the breakdown current threshold but inversely related to the concentration of the electrolyte used for the breakdown process.

中文翻译:

电解质浓度对通过受控介电击穿在3D打印的微流体设备中制造的纳米裂缝的影响。

使用由热塑性材料制成的三维印刷微流体装置来研究通过受控介电击穿产生的分子过滤器。该设备由丙烯腈丁二烯苯乙烯经熔融沉积建模三维打印机制成,由两个V型样品室组成,样品室之间有750 µm的挤出塑料缝隙隔开。通过施加15–20 kV的施加电压来控制介电击穿,从而在丙烯腈-丁二烯-苯乙烯薄膜中形成纳米裂缝,并在达到规定的电流阈值时终止电压。通过改变电流阈值和通过改变用于击穿的电解质的离子强度,可以实现纳米裂缝尺寸的改变。两种蛋白质R-藻红蛋白(RPE; 尺寸为10 nm)和荧光胺标记的BSA(f-BSA; 2-4 nm)用于监测纳米裂缝的尺寸和传输特性。使用1 mM磷酸盐缓冲液,当电流阈值设置为25 µA时,RPE和f-BSA均通过纳米裂缝。但是,当阈值降低到10 µA或更低时,RPE不能穿过纳米裂缝。当我们将击穿过程中的电解质浓度从1 mM磷酸盐缓冲液提高到10 mM时,BSA通过了,但当阈值等于或低于25 µA时,RPE被阻止。这表明纳米断裂尺寸(孔面积)与击穿电流阈值直接相关,但与用于击穿过程的电解质浓度成反比。用于监测纳米裂缝的大小和传输特性。使用1 mM磷酸盐缓冲液,当电流阈值设置为25 µA时,RPE和f-BSA均通过纳米裂缝。但是,当阈值降低到10 µA或更低时,RPE不能穿过纳米裂缝。当我们将击穿过程中的电解质浓度从1 mM磷酸盐缓冲液提高到10 mM时,BSA通过了,但当阈值等于或低于25 µA时,RPE被阻止。这表明纳米断裂尺寸(孔面积)与击穿电流阈值直接相关,但与用于击穿过程的电解质浓度成反比。用于监测纳米裂缝的大小和传输特性。使用1 mM磷酸盐缓冲液,当电流阈值设置为25 µA时,RPE和f-BSA均通过纳米裂缝。但是,当阈值降低到10 µA或更低时,RPE不能穿过纳米裂缝。当我们将击穿过程中的电解质浓度从1 mM磷酸盐缓冲液提高到10 mM时,BSA通过了,但当阈值等于或低于25 µA时,RPE被阻止。这表明纳米断裂尺寸(孔面积)与击穿电流阈值直接相关,但与用于击穿过程的电解质浓度成反比。但是,当阈值降低到10 µA或更低时,RPE不能穿过纳米裂缝。当我们将击穿过程中的电解质浓度从1 mM磷酸盐缓冲液提高到10 mM时,BSA通过了,但当阈值等于或低于25 µA时,RPE被阻止。这表明纳米断裂尺寸(孔面积)与击穿电流阈值直接相关,但与用于击穿过程的电解质浓度成反比。但是,当阈值降低到10 µA或更低时,RPE不能穿过纳米裂缝。当我们将击穿过程中的电解质浓度从1 mM磷酸盐缓冲液提高到10 mM时,BSA通过了,但当阈值等于或低于25 µA时,RPE被阻止。这表明纳米断裂尺寸(孔面积)与击穿电流阈值直接相关,但与用于击穿过程的电解质浓度成反比。
更新日期:2020-08-09
down
wechat
bug