当前位置: X-MOL 学术Neurophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diamond nanopillar arrays for quantum microscopy of neuronal signals.
Neurophotonics ( IF 5.3 ) Pub Date : 2020-08-01 , DOI: 10.1117/1.nph.7.3.035002
Liam Hanlon 1 , Vini Gautam 2 , James D A Wood 3 , Prithvi Reddy 1 , Michael S J Barson 1 , Marika Niihori 1 , Alexander R J Silalahi 4 , Ben Corry 4 , Jörg Wrachtrup 5 , Matthew J Sellars 1 , Vincent R Daria 2 , Patrick Maletinsky 3 , Gregory J Stuart 2 , Marcus W Doherty 1
Affiliation  

Significance: Wide-field measurement of cellular membrane dynamics with high spatiotemporal resolution can facilitate analysis of the computing properties of neuronal circuits. Quantum microscopy using a nitrogen-vacancy (NV) center is a promising technique to achieve this goal. Aim: We propose a proof-of-principle approach to NV-based neuron functional imaging. Approach: This goal is achieved by engineering NV quantum sensors in diamond nanopillar arrays and switching their sensing mode to detect the changes in the electric fields instead of the magnetic fields, which has the potential to greatly improve signal detection. Apart from containing the NV quantum sensors, nanopillars also function as waveguides, delivering the excitation/emission light to improve sensitivity. The nanopillars also improve the amplitude of the neuron electric field sensed by the NV by removing screening charges. When the nanopillar array is used as a cell niche, it acts as a cell scaffolds which makes the pillars function as biomechanical cues that facilitate the growth and formation of neuronal circuits. Based on these growth patterns, numerical modeling of the nanoelectromagnetics between the nanopillar and the neuron was also performed. Results: The growth study showed that nanopillars with a 2-μm pitch and a 200-nm diameter show ideal growth patterns for nanopillar sensing. The modeling showed an electric field amplitude as high as ≈1.02 × 1010 mV / m at an NV 100 nm from the membrane, a value almost 10 times the minimum field that the NV can detect. Conclusion: This proof-of-concept study demonstrated unprecedented NV sensing potential for the functional imaging of mammalian neuron signals.

中文翻译:

钻石纳米柱阵列用于神经信号的量子显微镜。

意义:具有高时空分辨率的细胞膜动力学的广域测量可以促进神经回路计算特性的分析。使用氮空位(NV)中心的量子显微镜是实现该目标的一种有前途的技术。目的:我们提出了基于NV的神经元功能成像的原理验证方法。方法:通过在金刚石纳米柱阵列中设计NV量子传感器并切换其传感模式以检测电场而不是磁场的变化来实现此目标,这有可能极大地改善信号检测。除了包含NV量子传感器外,纳米柱还充当波导,传递激发/发射光以提高灵敏度。纳米柱还通过去除屏蔽电荷来改善NV感测到的神经元电场的幅度。当纳米柱阵列用作细胞生态位时,它起着细胞支架的作用,使支柱起生物力学提示的作用,促进神经回路的生长和形成。基于这些生长模式,还对纳米柱和神经元之间的纳米电磁学进行了数值建模。结果:生长研究表明,间距为2μm,直径为200 nm的纳米柱显示出了理想的纳米柱传感生长模式。该模型显示在距膜100 nm处NV处的电场幅度高达≈1.02×1010 mV / m,该值几乎是NV可以检测到的最小电场的10倍。结论:
更新日期:2020-09-11
down
wechat
bug