当前位置: X-MOL 学术Bioinspir. Biomim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Realization of a Push-Me-Pull-You swimmer at low Reynolds numbers.
Bioinspiration & Biomimetics ( IF 3.1 ) Pub Date : 2020-09-10 , DOI: 10.1088/1748-3190/aba2b9
O Silverberg 1 , E Demir 1, 2 , G Mishler 1 , B Hosoume 1 , N Trivedi 1 , C Tisch 1 , D Plascencia 3 , O S Pak 1 , I E Araci 2
Affiliation  

Locomotion at low Reynolds numbers encounters stringent physical constraints due to the dominance of viscous over inertial forces. A variety of swimming microorganisms have demonstrated diverse strategies to generate self-propulsion in the absence of inertia. In particular, ameboid and euglenoid movements exploit shape deformations of the cell body for locomotion. Inspired by these biological organisms, the ‘push-me-pull-you’ (PMPY) swimmer (Avron J E et al 2005 New J. Phys. 7 234) represents an elegant artificial swimmer that can escape from the constraints of the scallop theorem and generate self-propulsion in highly viscous fluid environments. In this work, we present the first experimental realization of the PMPY swimmer, which consists of a pair of expandable spheres connected by an extensible link. We designed and constructed robotic PMPY swimmers and characterized their propulsion performance in highly viscous silicone oil in dynamically similar, macr...

中文翻译:

以低雷诺数实现 Push-Me-Pull-You 游泳者。

由于粘性比惯性力占主导地位,低雷诺数下的运动会遇到严格的物理限制。各种游泳微生物已经展示了在没有惯性的情况下产生自推进的多种策略。特别是,变形虫和眼虫运动利用细胞体的形状变形进行运动。受这些生物有机体的启发,“push-me-pull-you”(PMPY)游泳者(Avron JE 等人 2005 New J. Phys. 7 234)代表了一种优雅的人造游泳者,可以摆脱扇贝定理的约束,并且在高粘性流体环境中产生自推进力。在这项工作中,我们展示了 PMPY 游泳者的第一个实验实现,它由一对通过可扩展链接连接的可扩展球体组成。
更新日期:2020-09-11
down
wechat
bug