当前位置: X-MOL 学术Annu. Rev. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assembly and Dynamics of the Bacterial Flagellum.
Annual Review of Microbiology ( IF 8.5 ) Pub Date : 2020-09-09 , DOI: 10.1146/annurev-micro-090816-093411
Judith P Armitage 1 , Richard M Berry 2
Affiliation  

The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45–50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane. Over the last decade, new single-molecule and in vivo biophysical methods have allowed investigation of the stability of this and other large protein complexes, working in their natural environment inside live cells. This has revealed that in the bacterial flagellar motor, protein molecules in both the rotor and stator exchange with freely circulating pools of spares on a timescale of minutes, even while motors are continuously rotating. This constant exchange has allowed the evolution of modified components allowing bacteria to keep swimming as the viscosity or the ion composition of the outside environment changes.

中文翻译:


细菌鞭毛的组装和动力学。

细菌鞭毛马达是细菌细胞中最复杂的结构,可驱动离子鞭毛的离子驱动旋转。调节子的有序表达和相互作用蛋白环系列的组装,跨越内膜和外膜形成〜45–50 nm蛋白复合物,自结构和机理的研究以来,对其结构和机理的研究成为了主要挑战。大约40年前的旋转纳米机器。艰辛的分子遗传学,生物化学和电子显微镜检查揭示了一个微小的电动机在细菌膜上旋转。在过去的十年中,新的单分子和体内生物物理方法已经使人们能够研究这种和其他大型蛋白质复合物在活细胞内部自然环境中的稳定性。这表明在细菌鞭毛电动机中,即使电动机不断旋转,转子和定子中的蛋白质分子也会在几分钟内与自由循环的备用零件交换,时间间隔为几分钟。这种不断的交换使修饰成分得以进化,从而使细菌能够随着外部环境的粘度或离子组成的变化而保持游动。

更新日期:2020-09-10
down
wechat
bug