当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transients using low-high pulsed power in inductively coupled plasmas
Plasma Sources Science and Technology ( IF 3.8 ) Pub Date : 2020-08-12 , DOI: 10.1088/1361-6595/aba113
Chenhui Qu 1 , Sang Ki Nam 2 , Mark J Kushner 1
Affiliation  

Pulsed inductively coupled plasmas (ICPs) are widely deployed in the fabrication of semiconductor devices. Pulse repetition frequencies of up to tens of kHz are commonly used during plasma etching for the high power densities they generate during the pulse-on period, and for their unique chemistries during the pulse-off period. The use of highly attaching halogen gases produces low electron densities during the pulse-off period, and these low densities can result in instabilities, E–H transitions and ignition delays when applying power on the next pulse. To mitigate these possibilities, a low-level power environment could be maintained during ‘pulse-off’ to moderate the minimum plasma density, therefore reducing ignition delays and enhancing plasma stability. In this work, ICPs sustained by 5 kHz pulsed power using Ar/Cl2 mixtures at 20 mTorr were computationally investigated using a high-power, low-power format. For these conditions, the computed electron temperature (Te) reaches a quasi-steady state during both the highand low-power excitation. The model predicts that within the electromagnetic skin-depth, Te spikes to a high value during a low-to-high power transition, and to a low value during a high-to-low power transition. At the same time, a few cm above the substrate, there is little modulation in Te, as electron power convected from the skin depth disperses in traversing the reactor. The positive and negative spikes, and convection of transients across the reactors, are functions of power ramping time and gas mixtures.

中文翻译:

在电感耦合等离子体中使用低高脉冲功率的瞬态

脉冲电感耦合等离子体 (ICP) 广泛应用于半导体器件的制造。高达数十 kHz 的脉冲重复频率通常用于等离子体蚀刻,因为它们在脉冲开启期间产生高功率密度,并在脉冲关闭期间产生独特的化学性质。使用高度附着的卤素气体会在脉冲关闭期间产生低电子密度,而在下一个脉冲上施加电源时,这些低密度会导致不稳定、E-H 跃迁和点火延迟。为了减轻这些可能性,可以在“脉冲关闭”期间保持低水平的功率环境以缓和最小等离子体密度,从而减少点火延迟并增强等离子体稳定性。在这项工作中,使用高功率、低功率格式对使用 20 mTorr 的 Ar/Cl2 混合物由 5 kHz 脉冲功率维持的 ICP 进行了计算研究。对于这些条件,计算的电子温度 (Te) 在高功率和低功率激发期间均达到准稳态。该模型预测,在电磁趋肤深度内,Te 在低功率到高功率转换期间达到高值,在高功率到低功率转换期间达到低值。同时,在衬底上方几厘米处,Te 几乎没有调制,因为从趋肤深度对流的电子功率在穿过反应器时分散。正负尖峰以及反应器中瞬变的对流是功率上升时间和气体混合物的函数。计算出的电子温度 (Te) 在高功率和低功率激发期间均达到准稳态。该模型预测,在电磁趋肤深度内,Te 在低功率到高功率转换期间达到高值,在高功率到低功率转换期间达到低值。同时,在衬底上方几厘米处,Te 几乎没有调制,因为从趋肤深度对流的电子功率在穿过反应器时分散。正负尖峰以及反应器中瞬变的对流是功率上升时间和气体混合物的函数。计算出的电子温度 (Te) 在高功率和低功率激发期间均达到准稳态。该模型预测,在电磁趋肤深度内,Te 在低功率到高功率转换期间达到高值,在高功率到低功率转换期间达到低值。同时,在衬底上方几厘米处,Te 几乎没有调制,因为从趋肤深度对流的电子功率在穿过反应器时分散。正负尖峰以及反应器中瞬变的对流是功率上升时间和气体混合物的函数。并且在高到低功率转换期间变为低值。同时,在衬底上方几厘米处,Te 几乎没有调制,因为从趋肤深度对流的电子功率在穿过反应器时分散。正负尖峰以及反应器中瞬变的对流是功率上升时间和气体混合物的函数。并且在高到低功率转换期间变为低值。同时,在衬底上方几厘米处,Te 几乎没有调制,因为从趋肤深度对流的电子功率在穿过反应器时分散。正负尖峰以及反应器中瞬变的对流是功率上升时间和气体混合物的函数。
更新日期:2020-08-12
down
wechat
bug