当前位置: X-MOL 学术Photonics Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers
Photonics Research ( IF 7.6 ) Pub Date : 2020-08-11 , DOI: 10.1364/prj.389200
Teanchai Chantakit , Christian Schlickriede , Basudeb Sain , Fabian Meyer , Thomas Weiss , Nattaporn Chattham , Thomas Zentgraf

Dynamic control of compact chip-scale contactless manipulation of particles for bioscience applications remains a challenging endeavor, which is restrained by the balance between trapping efficiency and scalable apparatus. Metasurfaces offer the implementation of feasible optical tweezers on a planar platform for shaping the exerted optical force by a microscale-integrated device. Here, we design and experimentally demonstrate a highly efficient silicon-based metalens for two-dimensional optical trapping in the near-infrared. Our metalens concept is based on the Pancharatnam-Berry phase, which enables the device for polarization-sensitive particle manipulation. Our optical trapping setup is capable of adjusting the position of both the metasurface lens and the particle chamber freely in three directions, which offers great freedom for optical trap adjustment and alignment. Two-dimensional (2D) particle manipulation is done with a relatively low numerical aperture metalens ($NA_{ML}=0.6$). We experimentally demonstrate both 2D polarization sensitive drag and drop manipulation of polystyrene particles suspended in water and transfer of angular orbital momentum to these particles with a single tailored beam. Our work may open new possibilities for lab-on-a-chip optical trapping for bioscience applications and micro to nanoscale optical tweezers.

中文翻译:

用于光镊中二维粒子操作的全介电硅元透镜

用于生物科学应用的紧凑芯片级非接触式粒子操纵的动态控制仍然是一项具有挑战性的工作,这受到捕获效率和可扩展设备之间的平衡的限制。超表面提供了在平面平台上实现可行的光学镊子,用于通过微型集成设备塑造施加的光力。在这里,我们设计并实验证明了一种高效的硅基元透镜,用于近红外二维光捕获。我们的超透镜概念基于 Pancharatnam-Berry 相,它使设备能够进行偏振敏感粒子操作。我们的光学捕获装置能够在三个方向上自由调整超表面透镜和粒子室的位置,这为光阱调整和对准提供了很大的自由度。二维 (2D) 粒子操作是用相对较低的数值孔径元透镜 ($NA_{ML}=0.6$) 完成的。我们通过实验证明了悬浮在水中的聚苯乙烯颗粒的二维偏振敏感拖放操作以及使用单个定制光束将角轨道动量转移到这些颗粒。我们的工作可能为生物科学应用和微米到纳米级光学镊子的芯片实验室光学捕获开辟新的可能性。我们通过实验证明了悬浮在水中的聚苯乙烯颗粒的二维偏振敏感拖放操作以及使用单个定制光束将角轨道动量转移到这些颗粒。我们的工作可能为生物科学应用和微米到纳米级光学镊子的芯片实验室光学捕获开辟新的可能性。我们通过实验证明了悬浮在水中的聚苯乙烯颗粒的二维偏振敏感拖放操作以及使用单个定制光束将角轨道动量转移到这些颗粒。我们的工作可能为生物科学应用和微米到纳米级光学镊子的芯片实验室光学捕获开辟新的可能性。
更新日期:2020-08-11
down
wechat
bug