当前位置: X-MOL 学术Asia Pac. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low‐voltage and ion‐free‐reverse‐migration electrically regenerated mixed‐bed ion exchange for MEG desalination
Asia-Pacific Journal of Chemical Engineering ( IF 1.8 ) Pub Date : 2020-08-11 , DOI: 10.1002/apj.2559
San He 1 , Xiaozhuo Zhang 1 , Wen Yang 2 , Zhichao Zhao 2
Affiliation  

An improved electrical regeneration method of ion exchange was proposed to enhance the feasibility of applying ion exchange for mono‐ethylene glycol (MEG) desalination and simplify the existing MEG regeneration process in deepwater gas fields. Compared with the latest electrical regeneration process named membrane‐free electrodeionization (MFEDI), this method required lower voltage, did not consume high purity water, and eliminated ion backward migration in principle. These improvements were achieved by changing the electric field direction and the flow direction from parallel in MFEDI to perpendicular during ion exchange regeneration step. In this work, a pair of commercial ruthenium oxide‐coated titanium electrodes was installed on both sides of the cuboid experimental setup. The mixed resins consisting of strong‐base and weak‐acid resins were filled between the electrodes. In water flow and direct current electric field, the resins were regenerated successfully. The feasibility of efficient regeneration with high conductivity feed water (3–200 μS/cm) was verified. After regeneration of the resin bed for 1 h at a voltage lower than 73 V, 33.83% of NaCl in 5.16 bed volume (BV) simulated rich MEG liquid was removed. After 15 cycles of repeated operation, the performance of the resins remained stable. These results provide the possibility to reclaim MEG in deepwater gas fields through a simpler method.

中文翻译:

低压无离子逆迁移电再生混合床离子交换用于MEG脱盐

提出了一种改进的离子交换电再生方法,以提高将离子交换应用于单乙二醇(MEG)脱盐的可行性,并简化了深水气田现有的MEG再生工艺。与最新的称为无膜电去离子化(MFEDI)的电子再生工艺相比,该方法需要较低的电压,不消耗高纯度的水,并且原则上消除了离子的向后迁移。这些改进是通过在离子交换再生步骤中将电场方向和流动方向从MFEDI中的平行方向更改为垂直方向来实现的。在这项工作中,在长方体实验装置的两侧都安装了一对商用的氧化钌涂层钛电极。在电极之间填充由强碱和弱酸树脂组成的混合树脂。在水流和直流电场中,树脂成功再生。验证了使用高电导率给水(3–200μS/ cm)进行有效再生的可行性。在低于73 V的电压下将树脂床再生1小时后,将5.16床体积(BV)中模拟的富MEG液体中的33.83%NaCl除去。经过15个工作循环后,重复树脂的性能保持稳定。这些结果提供了通过更简单的方法在深水气田中回收MEG的可能性。在低于73 V的电压下将树脂床再生1小时后,将5.16床体积(BV)中模拟的富MEG液体中的33.83%NaCl除去。经过15个工作循环后,重复树脂的性能保持稳定。这些结果提供了通过更简单的方法在深水气田中回收MEG的可能性。在低于73 V的电压下将树脂床再生1小时后,将5.16床体积(BV)中模拟的富MEG液体中的33.83%NaCl除去。经过15个工作循环后,重复树脂的性能保持稳定。这些结果提供了通过更简单的方法在深水气田中回收MEG的可能性。
更新日期:2020-08-11
down
wechat
bug