当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two-Dimensional Observation of Copper Atoms After Forced Extinction of Vacuum Arcs by Laser-Induced Fluorescence
IEEE Transactions on Plasma Science ( IF 1.3 ) Pub Date : 2020-08-01 , DOI: 10.1109/tps.2020.3008277
Zhenxing Wang , Jiankun Liu , Yuecheng Li , Zhewei Zhou , Zhipeng Zhou , Haomin Li , Jianhua Wang , Liqiong Sun

The distribution and dissipation of neutral atoms are crucial for understanding the dielectric recovery process after interrupting direct current (DC) vacuum arcs. This article aims to investigate the dissipation of copper atoms after a forced extinction of the vacuum arc experimentally, adopting the plane laser-induced fluorescence method. The change in the 2-D distribution of copper atoms with time is presented. The results show that the magnetic fields, the axial magnetic field (AMF), and the transverse magnetic field (TMF) have a limited effect on the initial density of copper atoms. For both the AMF and the TMF, the copper atom densities at current zero (CZ) vary in the range (6– $8) \times 10^{17}\,\,\text{m}^{-3}$ when 3-kA vacuum arcs are forced to 0 in 0.2 ms. Contrary to the TMF case, in the AMF case, the evaporation on the anode after the CZ results in long-existing atoms near it. Consequently, the atom density of the TMF decays faster than that of the AMF, which indicates that a vacuum interrupter with the TMF contacts has a better performance when interrupting a DC load. The difference between the two magnetic fields originates from the arc control patterns. Namely, the AMF tends to keep vacuum arcs in a stable mode, which is unfavorable for a DC interruption; on the contrary, the TMF drives the vacuum arcs to move at high velocities resulting in faster dissipation of copper atoms after the CZ. In addition, the composition proportion of CuCr contacts has a limited effect on the diffusion of copper atoms when a low-vacuum arc is interrupted.

中文翻译:

激光诱导荧光对真空电弧强制消光后铜原子的二维观测

中性原子的分布和耗散对于理解中断直流 (DC) 真空电弧后的介电恢复过程至关重要。本文旨在通过平面激光诱导荧光法,通过实验研究真空电弧强制熄灭后铜原子的耗散。呈现了铜原子的二维分布随时间的变化。结果表明,磁场、轴向磁场(AMF)和横向磁场(TMF)对铜原子初始密度的影响有限。对于 AMF 和 TMF,电流为零 (CZ) 时的铜原子密度在 (6– $8) \times 10^{17}\,\,\text{m}^{-3}$ 范围内变化,当3-kA 真空电弧在 0.2 ms 内强制为 0。与 TMF 案例相反,在 AMF 案例中,CZ 之后阳极上的蒸发导致其附近长期存在的原子。因此,TMF 的原子密度比AMF 的原子密度衰减得更快,这表明具有TMF 触点的真空断路器在中断直流负载时具有更好的性能。两个磁场之间的差异源于电弧控制模式。即AMF趋向于使真空电弧处于稳定状态,不利于直流中断;相反,TMF 驱动真空电弧高速移动,导致 CZ 后铜原子的耗散更快。此外,当低真空电弧中断时,CuCr触头的组成比例对铜原子扩散的影响有限。TMF的原子密度比AMF的原子密度衰减得更快,这表明具有TMF触点的真空断路器在中断直流负载时具有更好的性能。两个磁场之间的差异源于电弧控制模式。即AMF趋向于使真空电弧处于稳定状态,不利于直流中断;相反,TMF 驱动真空电弧高速移动,导致 CZ 后铜原子的耗散速度更快。此外,当低真空电弧中断时,CuCr触头的成分比例对铜原子的扩散影响有限。TMF的原子密度比AMF的原子密度衰减得更快,这表明具有TMF触点的真空断路器在中断直流负载时具有更好的性能。两个磁场之间的差异源于电弧控制模式。即AMF趋向于使真空电弧处于稳定状态,不利于直流中断;相反,TMF 驱动真空电弧高速移动,导致 CZ 后铜原子的耗散速度更快。此外,当低真空电弧中断时,CuCr触头的成分比例对铜原子的扩散影响有限。两个磁场之间的差异源于电弧控制模式。即AMF趋向于使真空电弧处于稳定状态,不利于直流中断;相反,TMF 驱动真空电弧高速移动,导致 CZ 后铜原子的耗散速度更快。此外,当低真空电弧中断时,CuCr触头的成分比例对铜原子的扩散影响有限。两个磁场之间的差异源于电弧控制模式。即AMF趋向于使真空电弧处于稳定状态,不利于直流中断;相反,TMF 驱动真空电弧高速移动,导致 CZ 后铜原子的耗散速度更快。此外,当低真空电弧中断时,CuCr触头的成分比例对铜原子的扩散影响有限。
更新日期:2020-08-01
down
wechat
bug