当前位置: X-MOL 学术J. Navigation. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New Method of Real-Time Kinematic Positioning Suitable for Baselines of Different Lengths
The Journal of Navigation ( IF 2.4 ) Pub Date : 2020-08-11 , DOI: 10.1017/s0373463320000405
Jinhai Liu , Rui Tu , Rui Zhang , Xiaodong Huang , Pengfei Zhang , Xiaochun Lu

This study introduces a new real-time kinematic (RTK) positioning method which is suitable for baselines of different lengths. The method merges carrier-phase wide-lane, and ionosphere-free observation combinations (LWLC) instead of using pseudo-range, and carrier-phase ionosphere-free combination (PCLC), or single-frequency pseudo-range and phase combination (P1L1). In a first step, the double-differenced wide-lane ambiguities were calculated and fixed using the pseudo-range and carrier-phase wide-lane combination observations. Once the double-differenced wide-lane integer ambiguities were known, the wide-lane combined observations were regarded as accurate pseudo-range observations. Subsequently, the carrier-phase wide-lane, and ionosphere-free combined observations were used to fix the double-differenced carrier-phase integer ambiguities, achieving the final RTK positioning. The RTK positioning analysis was performed for short, medium, and long baselines, using the P1L1, PCLC, and LWLC methods, respectively. For a short baseline, the LWLC method demonstrated positioning accuracy similar to the P1L1 method, and performed better than the PCLC method. For medium and long baselines, the positioning accuracy of the LWLC method was slightly higher than those of the PCLC and P1L1 methods. In conclusion, the LWLC method provided high-precision RTK positioning results for baselines with different lengths, as it used high-precision carrier-phase observations with fixed ambiguities instead of low-precision pseudo-range observations.

中文翻译:

一种适用于不同长度基线的实时运动定位新方法

本研究介绍了一种新的实时运动学(RTK)定位方法,适用于不同长度的基线。该方法将载波相位宽通道和无电离层观测组合 (LWLC) 合并,而不是使用伪距和载波相位无电离层组合 (PCLC) 或单频伪距和相位组合 (P1L1 )。第一步,使用伪距和载波相位宽通道组合观测计算和固定双差分宽通道模糊度。一旦知道了双差分宽车道整数模糊度,宽车道组合观测就被认为是准确的伪距观测。随后,使用载波相位宽通道和无电离层组合观测来修复双差分载波相位整数模糊度,实现最终的RTK定位。分别使用 P1L1、PCLC 和 LWLC 方法对短、中和长基线进行 RTK 定位分析。对于较短的基线,LWLC 方法表现出与 P1L1 方法相似的定位精度,并且比 PCLC 方法表现更好。对于中长基线,LWLC 方法的定位精度略高于 PCLC 和 P1L1 方法。总之,LWLC方法为不同长度的基线提供了高精度的RTK定位结果,因为它使用了具有固定模糊度的高精度载波相位观测,而不是低精度的伪距观测。分别。对于较短的基线,LWLC 方法表现出与 P1L1 方法相似的定位精度,并且比 PCLC 方法表现更好。对于中长基线,LWLC 方法的定位精度略高于 PCLC 和 P1L1 方法。总之,LWLC方法为不同长度的基线提供了高精度的RTK定位结果,因为它使用了具有固定模糊度的高精度载波相位观测,而不是低精度的伪距观测。分别。对于较短的基线,LWLC 方法表现出与 P1L1 方法相似的定位精度,并且比 PCLC 方法表现更好。对于中长基线,LWLC 方法的定位精度略高于 PCLC 和 P1L1 方法。总之,LWLC方法为不同长度的基线提供了高精度的RTK定位结果,因为它使用了具有固定模糊度的高精度载波相位观测,而不是低精度的伪距观测。
更新日期:2020-08-11
down
wechat
bug