当前位置: X-MOL 学术Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fatigue Cracking of Additively Manufactured Materials—Process and Material Perspectives
Applied Sciences ( IF 2.838 ) Pub Date : 2020-08-11 , DOI: 10.3390/app10165556
Torsten Fischer , Bernd Kuhn , Detlef Rieck , Axel Schulz , Ralf Trieglaff , Markus Benjamin Wilms

Strong efforts are made internationally to optimize the process control of laser additive manufacturing processes. For this purpose, advanced detectors and monitoring software are being developed to control the quality of production. However, commercial suppliers of metal powders and part manufacturers are essentially focused on well-established materials. This article demonstrates the potential of optimized process control. Furthermore, we outline the development of a new high temperature structural steel, tailored to best utilize the advantages of additive manufacturing techniques. In this context, the impact of production-induced porosity on fatigue strength of austenitic 316L is presented. Additionally, we discuss the first conceptual results of a novel ferritic steel, named HiperFer (High Performance Ferrite), which was designed for increased fatigue strength. This ferritic, Laves phase-strengthened, stainless steel could be used for a wide range of structural components in power and (petro)chemical engineering at maximum temperatures ranging from about 580 to 650 °C. This material benefits from in situ heat treatment and counteracts process-related defects by “reactive” crack obstruction mechanisms, hampering both crack initiation and crack propagation. In this way, increased fatigue resistance and safety can be achieved.

中文翻译:

增材制造的疲劳裂纹—工艺和材料观点

国际上为优化激光增材制造过程的过程控制做出了巨大的努力。为此,正在开发先进的检测器和监视软件以控制生产质量。但是,金属粉末的商业供应商和零件制造商基本上将重点放在成熟的材料上。本文演示了优化过程控制的潜力。此外,我们概述了一种新型的高温结构钢的开发,该钢经量身定制以充分利用增材制造技术的优势。在这种情况下,提出了生产引起的孔隙度对奥氏体316L疲劳强度的影响。此外,我们讨论了一种名为HiperFer(高性能铁氧体)的新型铁素体钢的第一个概念性结果,旨在提高疲劳强度。这种Laves相铁素体铁素体不锈钢可以在大约580至650°C的最高温度下用于电力和(石油)化学工程中的各种结构部件。这种材料得益于原位热处理,并通过“反应性”裂纹阻塞机制抵消了与工艺相关的缺陷,从而阻碍了裂纹的产生和裂纹的扩展。以这种方式,可以提高抗疲劳性和安全性。这种材料得益于原位热处理,并通过“反应性”裂纹阻塞机制抵消了与工艺相关的缺陷,从而阻碍了裂纹的产生和裂纹的扩展。以这种方式,可以提高抗疲劳性和安全性。这种材料得益于原位热处理,并通过“反应性”裂纹阻塞机制抵消了与工艺相关的缺陷,从而阻碍了裂纹的产生和裂纹的扩展。以这种方式,可以提高抗疲劳性和安全性。
更新日期:2020-08-11
down
wechat
bug