当前位置: X-MOL 学术Genes › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Omics Application in Animal Science—A Special Emphasis on Stress Response and Damaging Behaviour in Pigs
Genes ( IF 2.8 ) Pub Date : 2020-08-11 , DOI: 10.3390/genes11080920
Claudia Kasper 1 , David Ribeiro 2 , André M de Almeida 2 , Catherine Larzul 3 , Laurence Liaubet 3 , Eduard Murani 4
Affiliation  

Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.

中文翻译:

组学在动物科学中的应用——特别强调猪的应激反应和损害行为

提高牲畜的抗压能力对于符合道德且有利可图的肉类和乳制品生产非常重要。易受压力影响可能会导致有害行为,这是养猪生产中的常见问题。由于各种原因,饲养具有增强抗压能力的动物很困难。首先,关于农场动物神经内分泌和行为应激反应的研究很少,因为很难在田间条件下记录足够的表型。其次,破坏性行为和压力易感性是复杂的特征,它们的生物学机制尚不清楚。将复杂的特征分解为生物学上更明确、可遗传且易于测量的代理特征,并开发生物标志物将有助于大量记录这些特征。高通量分子技术(“组学”)在单个分析步骤中研究整个分子及其相互作用。它们可以帮助破译不同生理系统的贡献,并识别代表不同生理途径的候选分子。在这里,我们提供了不同组学方法的一般概述,并举例说明了如何应用这些技术来发现生物标志物。我们讨论了不同组学技术对应激反应的遗传剖析,我们提供了示例并概述了组学工具在理解和预防破坏性行为爆发方面的潜在应用。它们可以帮助破译不同生理系统的贡献,并识别代表不同生理途径的候选分子。在这里,我们提供了不同组学方法的一般概述,并举例说明了如何应用这些技术来发现生物标志物。我们讨论了不同组学技术对应激反应的遗传剖析,我们提供了示例并概述了组学工具在理解和预防破坏性行为爆发方面的潜在应用。它们可以帮助破译不同生理系统的贡献,并识别代表不同生理途径的候选分子。在这里,我们提供了不同组学方法的一般概述,并举例说明了如何应用这些技术来发现生物标志物。我们讨论了不同组学技术对应激反应的遗传剖析,我们提供了示例并概述了组学工具在理解和预防破坏性行为爆发方面的潜在应用。
更新日期:2020-08-11
down
wechat
bug