当前位置: X-MOL 学术Engineering › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel X-ray and optical diagnostics for studying energetic materials: A review
Engineering ( IF 10.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.eng.2020.06.019
Yiyang Zhang , Sen Chen , Yang Cai , Lei Lu , Duan Fan , Jinchun Shi , Junyu Huang , Sheng-Nian Luo

Abstract Thermomechanical, physical, and chemical processes in energetic materials (EMs) during manufacturing and processing or under external stimuli such as shock compression, involve multiple temporal and spatial scales. Discovering novel phenomena, acquiring new data, and understanding underlying mechanisms all require temporally and spatially resolved diagnostics. Here, we present a brief review of novel diagnostics that are either emerging or have existed but rarely been applied to EMs, including two-dimensional (2D) and three-dimensional (3D) X-ray imaging, X-ray diffraction, coherent X-ray diffraction imaging, small angle X-ray scattering, terahertz and optical absorption/emission spectroscopy, and one-dimensional (1D) and 2D laser-based velocity/displacement interferometry. Typical spatial scales involved are lattice (nanometer and micrometer) and typical temporal scales (femtosecond, picosecond, nanosecond, microsecond, and millisecond). The targeted scientific questions and engineering problems include defects, strengths, deformations, hot spots, phase changes, reactions, and shock sensitivities. Basic principles of measurement and data analysis, and illustrative examples of these are presented. Advanced measurements and experimental complexities also necessitate further development in corresponding data analysis and interpretation methodologies, and multiscale modeling.

中文翻译:

用于研究含能材料的新型 X 射线和光学诊断:综述

摘要 含能材料 (EM) 在制造和加工过程中或在冲击压缩等外部刺激下的热机械、物理和化学过程涉及多个时空尺度。发现新现象、获取新数据和理解潜在机制都需要时间和空间解析的诊断。在这里,我们简要回顾了新兴或已经存在但很少应用于 EM 的新型诊断方法,包括二维 (2D) 和三维 (3D) X 射线成像、X 射线衍射、相干 X射线衍射成像、小角度 X 射线散射、太赫兹和光学吸收/发射光谱,以及基于一维 (1D) 和 2D 激光的速度/位移干涉测量法。涉及的典型空间尺度是点阵(纳米和微米)和典型的时间尺度(飞秒、皮秒、纳秒、微秒和毫秒)。目标科学问题和工程问题包括缺陷、强度、变形、热点、相变、反应和冲击敏感性。介绍了测量和数据分析的基本原理以及这些原理的说明性示例。高级测量和实验复杂性还需要进一步开发相应的数据分析和解释方法以及多尺度建模。和冲击敏感性。介绍了测量和数据分析的基本原理以及这些原理的说明性示例。高级测量和实验复杂性还需要进一步开发相应的数据分析和解释方法以及多尺度建模。和冲击敏感性。介绍了测量和数据分析的基本原理以及这些原理的说明性示例。高级测量和实验复杂性还需要进一步开发相应的数据分析和解释方法以及多尺度建模。
更新日期:2020-09-01
down
wechat
bug