当前位置: X-MOL 学术MAPAN › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Error Analysis and Comparison of the Fiber Optic Gyroscope Scale Factor Obtained by Angular Velocity Method and Angular Increment Method
MAPAN ( IF 1 ) Pub Date : 2020-08-10 , DOI: 10.1007/s12647-020-00386-1
Jiapeng Mou , Tengchao Huang , Xiaowu Shu

The fiber optic gyroscope (FOG) has a broad application prospect in the field of dynamic angle measurement. The scale factor, which is an important indicator of the FOG, directly determines the angle measurement precision. In this paper, the principles of angular velocity method and angular increment method, which have been commonly used in obtaining the scale factor, are introduced, and the error sources that affect the scale factor in both methods are analyzed in detail. The theoretical analysis results show that the main error sources of the scale factor are the relative error of the angular velocity benchmark generated by the rotary table and the value of the selected angular velocity benchmark in the angular velocity method. Other error sources need to be considered only at small angular velocity benchmark. Instead, the main error of the scale factor comes from the position precision of the rotary table in the angular increment method. Finally, the experiments on the scale factors of the FOG in both methods are carried out, and they are applied to the angle measurement experiments, respectively. The angle measurement results show that the deviation of the angle can be limited in 0.002° when the scale factor obtained by the angular increment method is adopted in angle measurement. It is an order of magnitude smaller than the angular velocity method. We can get the conclusion that the scale factor obtained by the angular increment method is more suitable for angle measurement than the angular velocity method.



中文翻译:

角速度法和角增量法获得的光纤陀螺比例尺误差分析与比较

光纤陀螺仪(FOG)在动态角度测量领域具有广阔的应用前景。比例因子是FOG的重要指标,直接决定角度测量的精度。本文介绍了在获得比例因子时常用的角速度法和角增量法的原理,并详细分析了两种方法中影响比例因子的误差源。理论分析结果表明,比例因子的主要误差来源是转台产生的角速度基准的相对误差和角速度方法中所选角速度基准的值。仅在小角速度基准下才需要考虑其他误差源。代替,比例因子的主要误差来自角度增量法中旋转工作台的位置精度。最后,对两种方法中的FOG比例因子进行了实验,并将其分别应用于角度测量实验。角度测量结果表明,在角度测量中采用角度增量方法获得的比例因子可以将角度偏差限制在0.002°。它比角速度方法小一个数量级。我们可以得出结论,通过角增量法获得的比例因子比角速度法更适合于角度测量。进行了两种方法对FOG比例因子的实验,并将其分别应用于角度测量实验。角度测量结果表明,在角度测量中采用角度增量方法获得的比例因子可以将角度偏差限制在0.002°。它比角速度方法小一个数量级。我们可以得出结论,通过角增量法获得的比例因子比角速度法更适合于角度测量。进行了两种方法对FOG比例因子的实验,并将其分别应用于角度测量实验。角度测量结果表明,在角度测量中采用角度增量方法获得的比例因子可以将角度偏差限制在0.002°。它比角速度方法小一个数量级。我们可以得出结论,通过角增量法获得的比例因子比角速度法更适合于角度测量。在角度测量中采用通过角度增量法获得的比例因子时为002°。它比角速度方法小一个数量级。我们可以得出结论,通过角增量法获得的比例因子比角速度法更适合于角度测量。在角度测量中采用通过角度增量法获得的比例因子时为002°。它比角速度方法小一个数量级。我们可以得出结论,通过角增量法获得的比例因子比角速度法更适合于角度测量。

更新日期:2020-08-11
down
wechat
bug