当前位置: X-MOL 学术Bull. Math. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Non-local Cross-Diffusion Model of Population Dynamics II: Exact, Approximate, and Numerical Traveling Waves in Single- and Multi-species Populations
Bulletin of Mathematical Biology ( IF 2.0 ) Pub Date : 2020-08-01 , DOI: 10.1007/s11538-020-00787-y
Andrew L Krause 1 , Robert A Van Gorder 2
Affiliation  

We study traveling waves in a non-local cross-diffusion-type model, where organisms move along gradients in population densities. Such models are valuable for understanding waves of migration and invasion and how directed motion can impact such scenarios. In this paper, we demonstrate the emergence of traveling wave solutions, studying properties of both planar and radial wave fronts in one- and two-species variants of the model. We compute exact traveling wave solutions in the purely diffusive case and then perturb these solutions to analytically capture the influence directed motion has on these exact solutions. Using linear stability analysis, we find that the minimum wavespeeds correspond to the purely diffusive case, but numerical simulations suggest that advection can in general increase or decrease the observed wavespeed substantially, which allows a single species to more rapidly move into unoccupied resource-rich spatial regions or modify the speed of an invasion for two populations. We also find interesting effects from the non-local interactions in the model, suggesting that single species invasions can be enhanced with stronger non-locality, but that invasion of a competitive species may be slowed due to this non-local effect. Finally, we simulate pattern formation behind waves of invasion, showing that directed motion can have substantial impacts not only on wavespeed but also on the existence and structure of emergent patterns, as predicted in the first part of our study (Taylor et al. in Bull Math Biol, 2020).

中文翻译:

种群动态的非局部交叉扩散模型 II:单一和多物种种群中的精确、近似和数值行波

我们在非局部交叉扩散型模型中研究行波,其中生物体沿种群密度梯度移动。这些模型对于理解迁移和入侵的波浪以及定向运动如何影响此类场景很有价值。在本文中,我们展示了行波解的出现,研究了模型的一种和两种变体中平面波阵面和径向波阵面的特性。我们在纯扩散情况下计算精确的行波解,然后扰动这些解以分析捕获定向运动对这些精确解的影响。使用线性稳定性分析,我们发现最小波速对应于纯扩散情况,但数值模拟表明平流通常可以显着增加或减少观察到的波速,这使得单个物种能够更快地进入未被占用的资源丰富的空间区域,或者改变两个种群的入侵速度。我们还发现模型中非局部相互作用的有趣影响,表明可以通过更强的非局部性增强单一物种的入侵,但由于这种非局部效应,竞争物种的入侵可能会减慢。最后,我们模拟了入侵波背后的模式形成,表明定向运动不仅可以对波速而且对涌现模式的存在和结构产生重大影响,正如我们研究的第一部分所预测的(Taylor et al. in Bull数学生物学,2020 年)。我们还发现模型中非局部相互作用的有趣影响,表明可以通过更强的非局部性增强单一物种的入侵,但由于这种非局部效应,竞争物种的入侵可能会减慢。最后,我们模拟了入侵波背后的模式形成,表明定向运动不仅可以对波速而且对涌现模式的存在和结构产生重大影响,正如我们研究的第一部分所预测的(Taylor et al. in Bull数学生物学,2020 年)。我们还发现模型中非局部相互作用的有趣影响,表明可以通过更强的非局部性增强单一物种的入侵,但由于这种非局部效应,竞争物种的入侵可能会减慢。最后,我们模拟了入侵波背后的模式形成,表明定向运动不仅可以对波速而且对涌现模式的存在和结构产生重大影响,正如我们研究的第一部分所预测的(Taylor et al. in Bull数学生物学,2020 年)。
更新日期:2020-08-01
down
wechat
bug