当前位置: X-MOL 学术Nucl. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toroidal modelling of core plasma flow damping by RMP fields in hybrid discharge on ASDEX Upgrade
Nuclear Fusion ( IF 3.5 ) Pub Date : 2020-08-10 , DOI: 10.1088/1741-4326/ab9dce
N. Zhang 1 , Y.Q. Liu 1, 2 , P. Piovesan 3 , V. Igochine 4 , D.L. Yu 1 , S. Wang 1 , G.Q. Dong 1 , G.Z. Hao 1 , G.L. Xia 5 , W.J. Chen 1 , L. Liu 1 , J.Q. Li 1 , X. Bai 1, 6 , The HL-2A Team , The ASDEX Upgrade Team , The EUROfusion MST1 Team
Affiliation  

In ASDEX Upgrade hybrid discharges, it is found that an externally applied n = 1 field preferentially distorts the plasma in the core, leading to significant flow damping there and elsewhere across the plasma radius. MARS-F/Q modeling of a neoclassical toroidal viscous NTV) torque that results from an amplified internal kink-type displacement in the plasma core is qualitatively consistent with the measured internal displacements, beta dependence, and rotation damping. Sensitivity studies indicate that the internal kink response and the resulting core flow damping critically depend on the plasma equilibrium pressure, the initial flow speed, the coil phasing and the proximity of q0 to 1. No appreciable flow damping is found for a βN plasma. A relatively slower initial toroidal flow results in a stronger core flow damping, due to the enhanced NTV torque. Weaker flow damping is achieved as q0 is assumed to be farther away from 1. Finally, a systematic coil phasing scan finds the strongest (weakest) flow damping occurring at the coil phasing of approximately 20 (200) degrees, quantitatively agreeing with experiments. This study points to the important role played by the internal kink response in plasma core flow damping in high-beta hybrid scenario plasmas such as that foreseen for ITER.

中文翻译:

在 ASDEX 升级的混合放电中通过 RMP 场对核心等离子体流阻尼进行环形建模

在 ASDEX Upgrade 混合放电中,发现外部施加的 n = 1 场优先使核心中的等离子体变形,导致等离子体半径上和其他地方的显着流动阻尼。由等离子体核心中放大的内部扭结型位移产生的新古典环形粘性 NTV) 扭矩的 MARS-F/Q 建模与测量的内部位移、β 依赖性和旋转阻尼定性一致。敏感性研究表明,内部扭结响应和由此产生的核心流动阻尼严重取决于等离子体平衡压力、初始流动速度、线圈定相和 q0 与 1 的接近程度。未发现 βN 等离子体的明显流动阻尼。相对较慢的初始环形流动导致更强的核心流动阻尼,由于增强的 NTV 扭矩。由于假设 q0 离 1 更远,因此实现了较弱的流动阻尼。最后,系统线圈定相扫描发现最强(最弱)的流动阻尼发生在大约 20 (200) 度的线圈定相处,在数量上与实验一致。这项研究指出了内部扭结响应在高 β 混合情景等离子体中等离子体核心流动阻尼中发挥的重要作用,例如 ITER 预见的等离子体。
更新日期:2020-08-10
down
wechat
bug