当前位置: X-MOL 学术Nucl. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly porous tungsten for plasma-facing applications in nuclear fusion power plants: a computational analysis of hollow nanoparticles
Nuclear Fusion ( IF 3.3 ) Pub Date : 2020-08-07 , DOI: 10.1088/1741-4326/aba092
Pablo Daz-Rodrguez 1 , Francisco Munoz 2, 3 , Jos Rogan 2, 3 , Ignacio Martn-Bragado 4 , J.M. Perlado 1, 5 , Ovidio Pea-Rodrguez 1, 5 , Antonio Rivera 1, 5 , Felipe J. Valencia 3, 6
Affiliation  

Plasma-facing materials (PFMs) for nuclear fusion, either in inertial confinement fusion (ICF) or in magnetic confinement fusion (MCF) approaches, must withstand extremely hostile irradiation conditions. Mitigation strategies are plausible in some cases, but usually the best, or even the only, solution for feasible plant designs is to rely on PFMs able to tolerate these irradiation conditions. Unfortunately, many studies report a lack of appropriate materials that have a good thermomechanical response and are not prone to deterioration by means of irradiation damage. The most deleterious effects are vacancy clustering and the retention of light species, as is the case for tungsten. In an attempt to find new radiation-resistant materials, we studied tungsten hollow nanoparticles under different irradiation scenarios that mimic ICF and MCF conditions. By means of classical molecular dynamics, we determined that these particles can resist astonishingly high temperatures (up to ∼3000 K) and huge internal pressures (>5 GPa at 3000 K) before rupture. In addition, in the case of gentle pressure increase (ICF scenarios), a self-healing mechanism leads to the formation of an opening through which gas atoms are able to escape. The opening disappears as the pressure drops, restoring the original particle. Regarding radiation damage, object kinetic Monte Carlo simulations show an additional self-healing mechanism. At the temperatures of interest, defects (including clusters) easily reach the nanoparticle surface and disappear, which makes the hollow nanoparticles promising for ICF designs. The situation is less promising for MCF because the huge ion densities expected at the surface of PFMs lead to inevitable particle rupture.



中文翻译:

核聚变电厂面向等离子体的高度多孔钨:空心纳米颗粒的计算分析

惯性约束聚变(ICF)或磁约束聚变(MCF)方法中用于核聚变的面向等离子体的材料(PFM)必须承受极端恶劣的辐照条件。在某些情况下,缓解策略是可行的,但可行的工厂设计通常最好的方法,甚至是唯一的解决方案,就是依靠能够耐受这些辐射条件的PFM。不幸的是,许多研究报告缺乏合适的材料,这些材料具有良好的热机械响应,并且不容易因辐射损伤而变质。与钨一样,最有害的影响是空位聚集和光物种的保留。为了寻找新的抗辐射材料,我们研究了在模拟ICF和MCF条件的不同照射情况下的空心钨纳米粒子。通过经典的分子动力学,我们确定这些颗粒在破裂前可以抵抗惊人的高温(高达〜3000 K)和巨大的内部压力(在3000 K时大于5 GPa)。此外,在压力缓慢升高的情况下(ICF场景),自愈机制会导致形成一个开口,气体原子可以通过该开口逸出。随着压力下降,开口消失,恢复了原始颗粒。关于辐射损伤,物体动力学蒙特卡洛模拟显示了一种附加的自愈机制。在感兴趣的温度下,缺陷(包括团簇)容易到达纳米颗粒表面并消失,这使得空心纳米颗粒有望用于ICF设计。

更新日期:2020-08-07
down
wechat
bug