当前位置: X-MOL 学术bioRxiv. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functional Organization of Midget and Parasol Ganglion Cells in the Human Retina
bioRxiv - Neuroscience Pub Date : 2020-08-11 , DOI: 10.1101/2020.08.07.240762
Alexandra Kling , Alex R. Gogliettino , Nishal P. Shah , Eric G. Wu , Nora Brackbill , Alexander Sher , Alan M. Litke , Ruwan A. Silva , E.J. Chichilnisky

The functional organization of diverse retinal ganglion cell (RGC) types, which shape the visual signals transmitted to the brain, has been examined in many species. The unique spatial, temporal, and chromatic properties of the numerically dominant RGC types in macaque monkey retina are presumed to most accurately model human vision. However, the functional similarity between RGCs in macaques and humans has only begun to be tested, and recent work suggests possible differences. Here, the properties of the numerically dominant human RGC types were examined using large-scale multi-electrode recordings with fine-grained visual stimulation in isolated retina, and compared to results from dozens of recordings from macaque retina using the same experimental methods and conditions. The properties of four major human RGC types -- ON-parasol, OFF-parasol, ON-midget, and OFF-midget -- closely paralleled those of the same macaque RGC types, including the spatial and temporal light sensitivity, precisely coordinated mosaic organization of receptive fields, ON-OFF asymmetries, spatial response nonlinearity, and sampling of photoreceptor inputs over space. Putative smooth monostratified cells and polyaxonal amacrine cells were also identified based on similarities to cell types previously identified in macaque retina. The results suggest that recently proposed differences between human and macaque RGCs probably reflect experimental differences, and that the macaque model provides an accurate picture of human RGC function.

中文翻译:

在人类视网膜中的小型和阳伞神经节细胞的功能组织。

已经在许多物种中检查了各种视网膜神经节细胞(RGC)类型的功能组织,它们塑造了传递到大脑的视觉信号。假定猕猴视网膜中数字占优势的RGC类型的独特空间,时间和色度属性可以最准确地模拟人类视觉。然而,猕猴与人类之间的RGC之间的功能相似性才刚刚开始被测试,最近的研究表明可能存在差异。在这里,在孤立的视网膜中使用具有细粒度视觉刺激的大规模多电极记录来检查数字占主导地位的人类RGC类型的属性,并将其与使用相同实验方法和条件从猕猴视网膜获得的数十个记录的结果进行比较。四种主要的人类RGC类型的属性-阳伞,阳伞,ON-侏儒和OFF-侏儒-与猕猴RGC类型相同,包括时空光敏性,接收场的精确协调的镶嵌组织,ON-OFF不对称,空间响应非线性以及感光器输入采样在空间上。还根据与先前在猕猴视网膜中鉴定的细胞类型的相似性,鉴定出推定的平滑单层细胞和多轴突无长突细胞。结果表明,最近提出的人类和猕猴RGC之间的差异可能反映了实验差异,并且猕猴模型提供了人类RGC功能的准确图片。接收场,开-关不对称,空间响应非线性以及空间上感光器输入采样的精确协调的镶嵌组织。还根据与先前在猕猴视网膜中鉴定的细胞类型的相似性,鉴定出推定的平滑单层细胞和多轴突无长突细胞。结果表明,最近提出的人类和猕猴RGC之间的差异可能反映了实验差异,并且猕猴模型提供了人类RGC功能的准确图片。接收场,开-关不对称,空间响应非线性以及空间上感光器输入采样的精确协调的镶嵌组织。还根据与先前在猕猴视网膜中鉴定的细胞类型的相似性,鉴定出推定的平滑单层细胞和多轴突无长突细胞。结果表明,最近提出的人类和猕猴RGC之间的差异可能反映了实验差异,并且猕猴模型提供了人类RGC功能的准确图片。
更新日期:2020-08-12
down
wechat
bug