当前位置: X-MOL 学术Can. Math. Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
KIRSZBRAUN’S THEOREM VIA AN EXPLICIT FORMULA
Canadian Mathematical Bulletin ( IF 0.5 ) Pub Date : 2020-04-29 , DOI: 10.4153/s0008439520000314
Daniel Azagra , Erwan Le Gruyer , Carlos Mudarra

Let $X,Y$ be two Hilbert spaces, $E$ a subset of $X$ and $G: E \to Y$ a Lipschitz mapping. A famous theorem of Kirszbraun's states that there exists $\widetilde{G} : X \to Y$ with $\widetilde{G}=G$ on $E$ and $\textrm{Lip}(\widetilde{G})=\textrm{Lip}(G).$ In this note we show that in fact the function $$\widetilde{G}:=\nabla_Y(\textrm{conv}(g))( \cdot , 0), \qquad \text{where} $$ $$ g(x,y) = \inf_{z \in E} \lbrace \langle G(z), y \rangle + \tfrac{M}{2} \|(x-z,y)\|^2 \rbrace + \tfrac{M}{2}\|(x,y)\|^2, $$ defines such an extension. We apply this formula to get an extension result for {\em strongly biLipschitz homeomorphisms.} Related to the latter, we also consider extensions of $C^{1,1}$ strongly convex functions.

中文翻译:

通过显式公式得到 KIRSZBRAUN 定理

令 $X,Y$ 是两个 Hilbert 空间,$E$ 是 $X$ 和 $G 的子集:E \to Y$ 是 Lipschitz 映射。Kirszbraun 的一个著名定理指出存在 $\widetilde{G} : X \to Y$ 且 $\widetilde{G}=G$ on $E$ 和 $\textrm{Lip}(\widetilde{G})= \textrm{Lip}(G).$ 在这个注释中,我们展示了实际上函数 $$\widetilde{G}:=\nabla_Y(\textrm{conv}(g))( \cdot , 0), \qquad \text{where} $$ $$ g(x,y) = \inf_{z \in E} \lbrace \langle G(z), y \rangle + \tfrac{M}{2} \|(xz, y)\|^2 \rbrace + \tfrac{M}{2}\|(x,y)\|^2, $$ 定义了这样的扩展。我们应用这个公式来得到{\em strong biLipschitz同胚}的扩展结果。与后者相关,我们还考虑了$C^{1,1}$强凸函数的扩展。
更新日期:2020-04-29
down
wechat
bug