当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Combined Ordered Macro-Mesoporous Architecture Design and Surface Engineering Strategy for High-Performance Sulfur Immobilizer in Lithium-Sulfur Batteries.
Small ( IF 13.0 ) Pub Date : 2020-08-09 , DOI: 10.1002/smll.202001089
Guihua Liu 1, 2 , Dan Luo 2 , Rui Gao 2 , Yongfeng Hu 3 , Aiping Yu 2 , Zhongwei Chen 2
Affiliation  

The practical application of lithium–sulfur (Li–S) batteries is hindered by the “shuttle” of lithium polysulfides (LiPS) and sluggish Li–S kinetics issues. Herein, a synergistic strategy combining mesoporous architecture design and defect engineering is proposed to synthesize multifunctional defective 3D ordered mesoporous cobalt sulfide (3DOM N‐Co9S8−x) to address the shuttling and sluggish reaction kinetics of polysulfide in Li–S batteries. The unique 3DOM design provides abundant voids for sulfur storage and enlarged active interfaces that reduce electron/ion diffusion pathways. Meanwhile, X‐ray absorption spectroscopy shows that the surface defect engineering tunes the CoS4 tetrahedra to CoS6 octahedra on Co9S8, endowing abundance of S vacancies on the Co9S8 octahedral sites. The ever‐increasing S vacancies over the course of electrochemical process further promotes the chemical trapping of LiPS and its conversion kinetics, rendering fast and durable Li–S chemistry. Benefiting from these features, the as‐developed 3DOM N‐Co9S8−x/S cathode delivers high areal capacity, superb rate capability, and excellent cyclic stability with ultralow capacity fading rate under raised sulfur loading and low electrolyte content. This design strategy promotes the development of practically viable Li–S batteries and sheds lights on the material engineering in related energy storage application.

中文翻译:

锂硫电池中高性能硫固定剂的组合有序宏观介孔结构设计和表面工程策略。

锂硫(Li-S)电池的实际应用受到多硫化锂(LiPS)的“穿梭”和锂硫动力学问题的拖累。本文提出了一种结合介孔结构设计和缺陷工程的协同策略,以合成多功能有缺陷的3D有序介孔硫化钴(3DOM N-Co 9 S 8- x),以解决锂硫电池中多硫化物的穿梭和缓慢反应动力学问题。独特的3DOM设计为硫的存储提供了充足的空隙,并扩大了活性界面,从而减少了电子/离子扩散途径。同时,X射线吸收光谱表明表面缺陷工程将CoS 4四面体调整为CoS 6八面体。9 S 8,在Co 9 S 8八面体位上赋予大量S空位。电化学过程中不断增加的S空位进一步促进了LiPS的化学捕集及其转化动力学,从而实现了快速耐用的Li-S化学。得益于这些功能,新开发的3DOM N-Co 9 S 8− x / S阴极具有较高的面容量,极高的倍率能力和出色的循环稳定性,在增加硫负荷和低电解质含量的情况下具有超低的容量衰减率。这种设计策略促进了实用锂离子电池的开发,并为相关储能应用中的材料工程提供了启示。
更新日期:2020-09-18
down
wechat
bug