当前位置: X-MOL 学术Mater. Today Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selective laser manufacturing of Ti-based alloys and composites: impact of process parameters, application trends, and future prospects
Materials Today Advances ( IF 10 ) Pub Date : 2020-08-09 , DOI: 10.1016/j.mtadv.2020.100097
N. Singh , P. Hameed , R. Ummethala , G. Manivasagam , K.G. Prashanth , J. Eckert

Aviation and automobile industries demand high strength, fatigue resistant, and wear-resistant materials in combination with lightweight, especially for structural applications. On the other hand, biomedical applications demand materials with low modulus and stiffness for optimized implants better matching the modulus of human bone combined with enhanced strength and wear resistance. For all the aforementioned applications in various fields, the fabrication of parts with desired size and shape without the need for joining or welding operations is desired while simultaneously reaching improved mechanical properties and more resistance to environmental attack, which are stringent requirements for almost all the applications. To achieve all these demands, both material developments, as well as modification of process conditions and parameters, are essential. Along these lines, a lot of research work focusses on advanced or even disruptive manufacturing routes and proper alloy development (e.g. Ti, Al, steels, and so on) applying additive manufacturing (AM) techniques for various applications. Among different AM methods, selective laser melting (SLM) is in high demand and preferred for achieving fully dense products in the required dimensions. Titanium alloys designed for AM have replaced a variety of other alloys due to their superior properties such as lightweight or good fatigue and corrosion resistance, achievable through modified microstructures gained by the faster heating and cooling rates realized upon laser printing. Ti alloys with a single (α) or dual (α+β) microstructure are mostly implemented in the aviation and automobile industries, whereas β alloys with exceptionally low modulus close to that of human bone are intensively studied for bio and dental implants but have not been commercialized yet. The modification of microstructure and properties in Ti-based materials with the addition of suitable reinforcement is also a reliable method. In this article, critical aspects for the optimization of processing parameters affecting the properties of SLM manufactured Ti alloys and titanium matrix composites (TMCs) will be presented, and future prospects of such materials will be critically assessed. This work is expected to be helpful for future studies on Ti alloys and composites with enhanced properties processed by laser manufacturing.



中文翻译:

钛基合金和复合材料的选择性激光制造:工艺参数,应用趋势和未来前景的影响

航空和汽车行业需要高强度,抗疲劳和耐磨的材料以及轻质材料,特别是在结构应用中。另一方面,生物医学应用需要具有低模量和刚度的材料来优化植入物,使其更好地匹配人骨的模量,并具有更高的强度和耐磨性。对于上述在各个领域中的所有应用,需要制造具有所需尺寸和形状的零件而无需进行连接或焊接操作,同时达到改善的机械性能和更大的耐环境侵蚀性,这是几乎所有应用的严格要求。为了满足所有这些需求,无论是材料开发还是工艺条件和参数的修改,是必不可少的 沿着这些思路,许多研究工作都集中在先进的或什至是破坏性的制造路线以及适当的合金开发(例如,Ti,Al,钢等)上,并应用增材制造(AM)技术来实现各种应用。在不同的增材制造方法中,对选择性激光熔化(SLM)的需求很高,并且对于实现所需尺寸的完全致密的产品来说,选择性激光熔化是首选。设计用于增材制造的钛合金具有卓越的性能,例如重量轻或良好的耐疲劳性和耐腐蚀性,已取代了其他多种合金,这可以通过激光打印时实现更快的加热和冷却速率所获得的改进的微观结构来实现。具有单(α)或双(α+β)微观结构的钛合金主要用于航空和汽车行业,然而,对于生物和牙科植入物,已经深入研究了具有极低模量,接近人骨的β合金,但尚未商业化。通过添加适当的增强材料来改善Ti基材料的微观结构和性能也是一种可靠的方法。在本文中,将介绍优化影响SLM制造的Ti合金和钛基复合材料(TMC)性能的工艺参数的关键方面,并对这些材料的未来前景进行严格评估。预期这项工作将对未来通过激光制造加工具有增强性能的钛合金和复合材料的研究有所帮助。通过添加适当的增强材料来改善Ti基材料的微观结构和性能也是一种可靠的方法。在本文中,将介绍优化影响SLM制造的Ti合金和钛基复合材料(TMC)性能的工艺参数的关键方面,并对这些材料的未来前景进行严格评估。预期这项工作将对未来通过激光制造加工具有增强性能的钛合金和复合材料的研究有所帮助。通过添加适当的增强材料来改善Ti基材料的微观结构和性能也是一种可靠的方法。在本文中,将介绍优化影响SLM制造的Ti合金和钛基复合材料(TMC)性能的工艺参数的关键方面,并对这些材料的未来前景进行严格评估。预期这项工作将对未来通过激光制造加工具有增强性能的钛合金和复合材料的研究有所帮助。这些材料的未来前景将得到严格评估。预期这项工作将对未来通过激光制造加工具有增强性能的钛合金和复合材料的研究有所帮助。这些材料的未来前景将得到严格评估。预期这项工作将对未来通过激光制造加工具有增强性能的钛合金和复合材料的研究有所帮助。

更新日期:2020-08-09
down
wechat
bug