当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic stress-strain response of graphene nanocomposites
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.ijimpeng.2020.103690
Ebrahim Sadeghpour , Yangbo Guo , Daniel Chua , Victor P.W. Shim

Abstract The dynamic stress-strain response of a polyvinyl alcohol (PVA) - graphene oxide (GO) nanocomposite is examined through tensile testing over a strain rate range of 0.003/s-1,200/s, as well as via theoretical microscale modeling. PVA-GO samples with various GO content were prepared and subjected to uniaxial tension using a universal testing machine and a split Hopkinson tension bar arrangement. In previous studies by the authors [ 1 , 2 ], interfacial slip between the GO flakes and PVA matrix was identified as a key mechanism in the mechanical behavior of the nanocomposite, and a modified Mori-Tanaka (M-T) approach was developed to accommodate the effect of slip. The modified M-T method was employed to model the stress-strain response of the PVA-GO nanocomposite at various strain rates, and close agreement between the theoretical and experimental results was observed. The rate sensitivity of PVA and its nanocomposites was analyzed by determining the initial elastic stiffness of specimens and their stress corresponding to a strain of 0.1, as functions of logarithmic strain rate ( log ( e ˙ ) ); it was found that both these parameters increase linearly with log ( e ˙ ) . Moreover, the rate of increase in initial elastic stiffness with log ( e ˙ ) increases with GO content. In terms of the relationship between the stress at a strain of 0.1 and the logarithmic strain rate ( log e ˙ ), both PVA and its nanocomposites display curves with similar profiles.

中文翻译:

石墨烯纳米复合材料的动态应力应变响应

摘要 聚乙烯醇 (PVA) - 氧化石墨烯 (GO) 纳米复合材料的动态应力-应变响应通过在 0.003/s-1,200/s 应变速率范围内进行拉伸测试以及通过理论微尺度建模来检验。制备具有各种 GO 含量的 PVA-GO 样品,并使用万能试验机和分体式霍普金森拉杆装置进行单轴拉伸。在作者之前的研究 [1, 2] 中,GO 薄片和 PVA 基质之间的界面滑移被确定为纳米复合材料力学行为的关键机制,并且开发了一种改进的 Mori-Tanaka (MT) 方法来适应滑移的影响。采用改进的 MT 方法模拟了 PVA-GO 纳米复合材料在各种应变速率下的应力-应变响应,并且观察到理论和实验结果之间的密切一致性。PVA 及其纳米复合材料的速率敏感性通过确定试样的初始弹性刚度及其对应于 0.1 应变的应力来分析,作为对数应变率 (log (e·)) 的函数;发现这两个参数都随着 log (e˙) 线性增加。此外,初始弹性刚度随 log ( e ˙ ) 的增加率随 GO 含量的增加而增加。在应变为 0.1 时的应力与对数应变率 (log e ˙ ) 之间的关系方面,PVA 及其纳米复合材料都显示出具有相似曲线的曲线。PVA 及其纳米复合材料的速率敏感性通过确定试样的初始弹性刚度及其对应于 0.1 应变的应力来分析,作为对数应变率 (log (e·)) 的函数;发现这两个参数都随着 log (e˙) 线性增加。此外,初始弹性刚度随 log ( e ˙ ) 的增加率随 GO 含量的增加而增加。在应变为 0.1 时的应力与对数应变率 (log e ˙ ) 之间的关系方面,PVA 及其纳米复合材料都显示出具有相似曲线的曲线。PVA 及其纳米复合材料的速率敏感性通过确定试样的初始弹性刚度及其对应于 0.1 应变的应力来分析,作为对数应变率 (log (e·)) 的函数;发现这两个参数都随着 log (e˙) 线性增加。此外,初始弹性刚度随 log ( e ˙ ) 的增加率随 GO 含量的增加而增加。在应变为 0.1 时的应力与对数应变率 (log e ˙ ) 之间的关系方面,PVA 及其纳米复合材料都显示出具有相似曲线的曲线。
更新日期:2020-11-01
down
wechat
bug