当前位置: X-MOL 学术Enzyme Microb. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CRISPR-Cas9-mediated seb1 disruption in Talaromyces pinophilus EMU for its enhanced cellulase production
Enzyme and Microbial Technology ( IF 3.4 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.enzmictec.2020.109646
Rupali Rahul Manglekar 1 , Anli Geng 1
Affiliation  

Filamentous fungi are working horses for industrial enzyme production. Combinatory approaches, such as random mutagenesis and rational genetic engineering, were adopted to improve their enzyme productivity. The filamentous fungus Talaromyces pinophilus EMU is a hyper cellulase-producing filamentous fungus obtained through random mutagenesis. This study further enhanced its cellulase production through the disruption of seb1 gene, which encodes Seb1, a transcription factor that binds to the stress response element (STRE) and regulates a variety of cellular processes. Gene seb1 was cloned from strain T. pinophilus EMU and disrupted using CRISPR-Cas9 technology. The seb1-disruptants (TpΔseb1 strains) showed distinct morphology from its parent strain. They presented a hyphal branching phenotype with decreased transcription levels of rhoA and ras1 genes involved in hyphal branching. Furthermore, TpΔseb1 strains displayed lower cell biomass, higher specific protein content, and 20%-40% enhancement in filter paper cellulase (FPase) activity, however, insignificant changes in the transcription levels of cbh1 and bgl1 genes involved in cellulase production. Through this study, we confirmed that seb1 gene disruption in T. pinophilus EMU caused more hyphal branching, reduced cell growth, increased protein secretion, and enhanced cellulase production. In addition, we successfully established the CRISPR-Cas9 genome-editing platform in T. pinophilus EMU.

中文翻译:

在 Talaromyces pinophilus EMU 中 CRISPR-Cas9 介导的 seb1 破坏因其增强的纤维素酶生产

丝状真菌是工业酶生产的工作马。采用随机诱变和合理基因工程等组合方法来提高酶的生产力。丝状真菌 Talaromyces pinophilus EMU 是一种通过随机诱变获得的超产纤维素酶的丝状真菌。该研究通过破坏编码 Seb1 的 seb1 基因进一步增强了其纤维素酶的产生,Seb1 是一种与应激反应元件 (STRE) 结合并调节多种细胞过程的转录因子。基因 seb1 从菌株 T. pinophilus EMU 中克隆,并使用 CRISPR-Cas9 技术进行破坏。seb1 干扰物(TpΔseb1 菌株)显示出与其亲本菌株不同的形态。他们呈现出一种菌丝分支表型,其中涉及菌丝分支的 rhoA 和 ras1 基因的转录水平降低。此外,TpΔseb1 菌株显示出较低的细胞生物量、较高的特定蛋白质含量和 20%-40% 的滤纸纤维素酶 (FPase) 活性增强,然而,参与纤维素酶生产的 cbh1 和 bgl1 基因的转录水平变化不显着。通过这项研究,我们证实嗜松果蝇动车组中的 seb1 基因破坏导致更多的菌丝分支、细胞生长减少、蛋白质分泌增加和纤维素酶生产增加。此外,我们在 T. pinophilus EMU 中成功建立了 CRISPR-Cas9 基因组编辑平台。和 20%-40% 的滤纸纤维素酶 (FPase) 活性增强,然而,参与纤维素酶生产的 cbh1 和 bgl1 基因的转录水平变化不显着。通过这项研究,我们证实嗜松果蝇动车组中的 seb1 基因破坏导致更多的菌丝分支、细胞生长减少、蛋白质分泌增加和纤维素酶生产增加。此外,我们在 T. pinophilus EMU 中成功建立了 CRISPR-Cas9 基因组编辑平台。和 20%-40% 的滤纸纤维素酶 (FPase) 活性增强,然而,参与纤维素酶生产的 cbh1 和 bgl1 基因的转录水平变化不显着。通过这项研究,我们证实嗜松果蝇动车组中的 seb1 基因破坏导致更多的菌丝分支、细胞生长减少、蛋白质分泌增加和纤维素酶生产增加。此外,我们在 T. pinophilus EMU 中成功建立了 CRISPR-Cas9 基因组编辑平台。
更新日期:2020-10-01
down
wechat
bug