当前位置: X-MOL 学术Int. J. Min. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Key technologies and engineering practices for soft-rock protective seam mining
International Journal of Mining Science and Technology ( IF 11.7 ) Pub Date : 2020-08-08 , DOI: 10.1016/j.ijmst.2020.07.006
Xiang Cheng , Guangming Zhao , Yingming Li , Xiangrui Meng , Qingyi Tu

Severe gas disasters in deep mining areas are increasing, and traditional protective coal seam mining is facing significant challenges. This paper proposes an innovative technology using soft rock as the protective seam in the absence of an appropriate coal seam. Based on the geological engineering conditions of the new horizontal first mining area of Luling Coal Mine in Huaibei, China, the impacts of different mining parameters of the soft-rock protective seam on the pressure-relief effect of the protected coal seam were analyzed through numerical simulation. The unit stress of the protected coal seam, which was less than half of the primary rock stress, was used as the mining stress pressure-relief index. The optimized interlayer space was found to be 59 m for the first soft-rock working face, with a 2 m mining thickness and 105 m face length. The physicochemical characteristics of the orebody were analyzed, and a device selection framework for the soft-rock protective seam was developed. Optimal equipment for the working face was selected, including the fully-mechanized hydraulic support and coal cutter. A production technology that combined fully-mechanized and blasting-assisted soft-rock mining was developed. Engineering practices demonstrated that normal circulation operation can be achieved on the working face of the soft-rock protective seam, with an average advancement rate of 1.64 m/d. The maximum residual gas pressure and content, which were measured at the cut hole position of the protected coal seams (Nos. 8 and 9), decreased to 0.35 MPa and 4.87 m3/t, respectively. The results suggested that soft-rock protective seam mining can produce a significant gas-control effect.



中文翻译:

软岩保护煤层开采关键技术与工程实践

深部矿区的严重瓦斯灾害正在增加,传统的保护性煤层开采正面临重大挑战。本文提出了一种在缺乏合适煤层的情况下使用软岩作为保护层的创新技术。根据淮北Lu陵煤矿新水平一矿区的地质工程条件,通过数值分析分析了软岩保护层不同开采参数对保护层卸压效果的影响。模拟。将保护煤层的单位应力(小于原始岩石应力的一半)用作开采应力释放指数。发现第一软岩工作面的最佳夹层空间为59 m,开采厚度为2 m,工作面长度为105 m。分析了矿体的理化特征,建立了软岩保护层的装置选择框架。选择了用于工作面的最佳设备,包括全机械化的液压支架和切煤机。开发了一种结合了全机械化和爆破辅助软岩开采的生产技术。工程实践表明,在软岩保护煤层的工作面上可以实现正常的循环作业,平均推进速度为1.64 m / d。在保护煤层(8号和9号)的切孔位置处测得的最大残余气体压力和含量分别降至0.35 MPa和4.87 m 开发了软岩保护煤层的设备选型框架。选择了用于工作面的最佳设备,包括全机械化的液压支架和切煤机。开发了一种结合了全机械化和爆破辅助软岩开采的生产技术。工程实践表明,在软岩保护煤层的工作面上可以实现正常的循环作业,平均推进速度为1.64 m / d。在保护煤层(8号和9号)的切孔位置处测得的最大残余气体压力和含量分别降至0.35 MPa和4.87 m 开发了软岩保护煤层的设备选型框架。选择了用于工作面的最佳设备,包括全机械化的液压支架和切煤机。开发了一种结合了全机械化和爆破辅助软岩开采的生产技术。工程实践表明,在软岩保护煤层的工作面上可以实现正常的循环作业,平均推进速度为1.64 m / d。在保护煤层(8号和9号)的切孔位置处测得的最大残余气体压力和含量分别降至0.35 MPa和4.87 m 开发了一种结合了全机械化和爆破辅助软岩开采的生产技术。工程实践表明,在软岩保护煤层的工作面上可以实现正常的循环作业,平均推进速度为1.64 m / d。在保护煤层(8号和9号)的切孔位置处测得的最大残余气体压力和含量分别降至0.35 MPa和4.87 m 开发了一种结合了全机械化和爆破辅助软岩开采的生产技术。工程实践表明,在软岩保护煤层的工作面上可以实现正常的循环作业,平均推进速度为1.64 m / d。在保护煤层(8号和9号)的切孔位置处测得的最大残余气体压力和含量分别降至0.35 MPa和4.87 m3 /吨。结果表明,软岩保护性煤层开采可以产生明显的瓦斯控制效果。

更新日期:2020-08-08
down
wechat
bug