当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anisotropic spin-acoustic resonance in silicon carbide at room temperature
Physical Review Letters ( IF 8.1 ) Pub Date : 
A. Hernández-Mínguez, A. V. Poshakinskiy, M. Hollenbach, P. V. Santos, G. V. Astakhov

We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of ±1 and ±2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.

中文翻译:

室温下碳化硅的各向异性自旋声共振

我们报告了室温下碳化硅在原子尺度中心的声驱动自旋共振。具体来说,我们使用表面声波腔来选择性解决自旋跃迁的磁量子数差为±1个±2在没有外部微波电磁场的情况下。这些自旋声共振揭示了对静磁场方向的非平凡依赖,这归因于声场的固有对称性以及半整数自旋系统的特殊特性。我们开发了自旋声相互作用的微观模型,该模型描述了没有拟合参数的实验数据。此外,我们预测行进的表面波会导致手性自旋声共振,该手性自旋声共振会在磁场反转后发生变化。这些结果将碳化硅确立为片上自旋光机械量子控制的高度有前途的混合平台,能够在室温下进行工程相互作用。
更新日期:2020-08-08
down
wechat
bug